Clutch Prep is now a part of Pearson
Ch 32: Alternating CurrentWorksheetSee all chapters
All Chapters
Ch 01: Intro to Physics; Units
Ch 02: 1D Motion / Kinematics
Ch 03: Vectors
Ch 04: 2D Kinematics
Ch 05: Projectile Motion
Ch 06: Intro to Forces (Dynamics)
Ch 07: Friction, Inclines, Systems
Ch 08: Centripetal Forces & Gravitation
Ch 09: Work & Energy
Ch 10: Conservation of Energy
Ch 11: Momentum & Impulse
Ch 12: Rotational Kinematics
Ch 13: Rotational Inertia & Energy
Ch 14: Torque & Rotational Dynamics
Ch 15: Rotational Equilibrium
Ch 16: Angular Momentum
Ch 17: Periodic Motion
Ch 19: Waves & Sound
Ch 20: Fluid Mechanics
Ch 21: Heat and Temperature
Ch 22: Kinetic Theory of Ideal Gases
Ch 23: The First Law of Thermodynamics
Ch 24: The Second Law of Thermodynamics
Ch 25: Electric Force & Field; Gauss' Law
Ch 26: Electric Potential
Ch 27: Capacitors & Dielectrics
Ch 28: Resistors & DC Circuits
Ch 29: Magnetic Fields and Forces
Ch 30: Sources of Magnetic Field
Ch 31: Induction and Inductance
Ch 32: Alternating Current
Ch 33: Electromagnetic Waves
Ch 34: Geometric Optics
Ch 35: Wave Optics
Ch 37: Special Relativity
Ch 38: Particle-Wave Duality
Ch 39: Atomic Structure
Ch 40: Nuclear Physics
Ch 41: Quantum Mechanics
Sections
Alternating Voltages and Currents
Inductors in AC Circuits
Capacitors in AC Circuits
Power in AC Circuits
Resistors in AC Circuits
Series LRC Circuits
RMS Current and Voltage
Phasors for Inductors
Phasors for Capacitors
Phasors for Resistors
Resonance in Series LRC Circuits
Phasors
Impedance in AC Circuits

Concept #1: Phasors for Resistors

Transcript

Hey guys, in this video we want to talk about phasors specifically applied to resistors in AC circuits, Alright let's get to it. Remember guys that the voltage and the current across a resistor at any time T is given by these two equations these two functions right here. They are both at the same angle omega T, remember that angle for any phasor is omega T because both of these functions both of these cosines have that same angle they are said to be in phase, in phase means identical I'll show you what this means in the context of the phasors drawn below. The first phaser that I drew is the current through the resistor and it is at some angle omega T. Next I drew the voltage across the resistor which is at that same angle omega T. So when I combine these phasors into a single phasor diagram. I get that the current and the voltage across the resistor line up because they are both at this angle omega T they are said to be in phase they line up any two phasors that are in phase will always be lined up as they rotate so at anytime that you choose to measure it will always be lined up sorry they will always be lined up.

This is the conclusion that we're going to take away from this video that the voltage across the resistor is in phase with the current through the resistor it's very important to remember that now it's do a quick example. An AC source with an angular frequency of 20 inverse seconds is connected to a resistor with the circuit broken 0.2 seconds after the circuit is completed draw the voltage phasor and the current phasor when the circuits broken nothing is happening the second it's closed now time starts. So the question is if we want to draw those phasers what is that angle that they're going to be at? That angle for the phasors always going to be omega T. So this is going to be omega which we were told is 20 inverse seconds times T which we're told is 0.2 seconds. So this is going to be 4 radians which is equivalent to 229 degrees if you just convert quickly between radiance and degrees so now we know how to draw our phasors.

229 degrees places us in the third quadrant because that's greater than 180 and last then 270 so thats going to put us somewhere around here 229 degrees. We're going to have a phasor for the current Oh sorry guys a little technical difficulty a phasor for the current and we're also going to have a phasor for the voltage sorry if those colors are the opposite of what I before the color itself doesn't really matter and these are in phase and you can draw other angles if you want like this angle or this angle it doesn't really matter as long as whatever angle you choose it matches up with this angle of 229. Alright guys thanks for watching this video that wraps up our talk about phasors with respect to resistors and AC circuits alright.

Practice: A 12 Ω resistor is connected to an AC source. If the resistor’s voltage phasor is initially at 0° , and the figure below shows the phasor after 0.04 s, answer the following: 

a) What is the angular frequency of the source? Assume the phasor is on its first rotation. 

b) What does the current phasor diagram look like? 

c) What is the current in the circuit at this point (t = 0.04 𝑠)?