Ch 19: Kinetic Theory of Ideal GassesSee all chapters
All Chapters
Ch 01: Units & Vectors
Ch 02: 1D Motion (Kinematics)
Ch 03: 2D Motion (Projectile Motion)
Ch 04: Intro to Forces (Dynamics)
Ch 05: Friction, Inclines, Systems
Ch 06: Centripetal Forces & Gravitation
Ch 07: Work & Energy
Ch 08: Conservation of Energy
Ch 09: Momentum & Impulse
Ch 10: Rotational Kinematics
Ch 11: Rotational Inertia & Energy
Ch 12: Torque & Rotational Dynamics
Ch 13: Rotational Equilibrium
Ch 14: Angular Momentum
Ch 15: Periodic Motion (Oscillations)
Ch 16: Waves & Sound
Ch 17: Fluid Mechanics
Ch 18: Heat and Temperature
Ch 19: Kinetic Theory of Ideal Gasses
Ch 20: The First Law of Thermodynamics
Ch 21: The Second Law of Thermodynamics
Ch 22: Electric Force & Field; Gauss' Law
Ch 23: Electric Potential
Ch 24: Capacitors & Dielectrics
Ch 25: Resistors & DC Circuits
Ch 26: Magnetic Fields and Forces
Ch 27: Sources of Magnetic Field
Ch 28: Induction and Inductance
Ch 29: Alternating Current
Ch 30: Electromagnetic Waves
Ch 31: Geometric Optics
Ch 32: Wave Optics
Ch 34: Special Relativity
Ch 35: Particle-Wave Duality
Ch 36: Atomic Structure
Ch 37: Nuclear Physics
Ch 38: Quantum Mechanics

Introduction to Ideal Gasses

See all sections

Concept #1: Atomic View of an Ideal Gas

Practice: A piston is a cylinder with one of the faces free to move. Initially, a piston has a volume of 0.002m3 and has air inside of it at atmospheric pressure. If the moving face of the piston is pushed SLOWLY inward, decreasing the volume to 0.00045 m3 , what is the final pressure of the air inside of the cylinder?

Concept #2: Ideal Gas Law

Practice: A scuba tank is typically filled to a pressure of 3000 psi (2.07 x 107 Pa). When a scuba tank’s pressure gets too high, there is a safety valve that will release all of the air inside before the scuba tank can explode. Let’s say the safety valve on a particular tank will release at 4000 psi. If the tank is filled to 3000 psi with room temperature air (27°C), how hot can the scuba tank get before the safety valve will release?

Practice: A tank holds a certain amount of an ideal gas at a pressure of 5.5 x 106 Pa and a temperature of 27°C. If 1/3 of the gas is withdrawn from the tank and the temperature is raised to 50°C, what is the new pressure inside the tank?