Ch 09: Momentum & ImpulseWorksheetSee all chapters
All Chapters
Ch 01: Units & Vectors
Ch 02: 1D Motion (Kinematics)
Ch 03: 2D Motion (Projectile Motion)
Ch 04: Intro to Forces (Dynamics)
Ch 05: Friction, Inclines, Systems
Ch 06: Centripetal Forces & Gravitation
Ch 07: Work & Energy
Ch 08: Conservation of Energy
Ch 09: Momentum & Impulse
Ch 10: Rotational Kinematics
Ch 11: Rotational Inertia & Energy
Ch 12: Torque & Rotational Dynamics
Ch 13: Rotational Equilibrium
Ch 14: Angular Momentum
Ch 15: Periodic Motion (NEW)
Ch 15: Periodic Motion (Oscillations)
Ch 16: Waves & Sound
Ch 17: Fluid Mechanics
Ch 18: Heat and Temperature
Ch 19: Kinetic Theory of Ideal Gasses
Ch 20: The First Law of Thermodynamics
Ch 21: The Second Law of Thermodynamics
Ch 22: Electric Force & Field; Gauss' Law
Ch 23: Electric Potential
Ch 24: Capacitors & Dielectrics
Ch 25: Resistors & DC Circuits
Ch 26: Magnetic Fields and Forces
Ch 27: Sources of Magnetic Field
Ch 28: Induction and Inductance
Ch 29: Alternating Current
Ch 30: Electromagnetic Waves
Ch 31: Geometric Optics
Ch 32: Wave Optics
Ch 34: Special Relativity
Ch 35: Particle-Wave Duality
Ch 36: Atomic Structure
Ch 37: Nuclear Physics
Ch 38: Quantum Mechanics

Concept #1: Impulse & Impulse-Momentum Theorem

Practice: You throw a 100-g ball with 30 m/s. If the ball is in your hand for 0.2 s, find the impulse you deliver to it. 

EXTRA: Calculate the average force that you exert on the ball.

Example #1: Intro to Impulse

Example #2: Momentum & Impulse

Practice: You catch a 624-g basketball originally moving with 10 m/s. Calculate the impulse delivered to the ball.

Practice: When a 300-g ball is dropped from 3 m, it hits the floor and rebounds to a height of 2 m. If the ball is in contact with the floor for 0.02 s, what is the average force exerted by the floor on the ball?

Practice: A box of unknown mass on a flat surface slows down from 12 m/s to 4 m/s after crossing a rough patch. The box-patch coefficient of friction is 0.5. Use impulse/momentum to find how long (in s) the box takes to cover the entire patch.

Additional Problems
A block with mass 5.0 kg is initially at rest on a horizontal frictionless surface. Then a constant horizontal force F is applied to the block. After the force has been applied for 4.0 seconds the speed of the block is 12.0 m/s. What is the magnitude of the force? A) 15.0 N B) 3.0 N C) 2.5 N D) 30.0 N E) None of the above answers
A 0.24 kg blob of clay is thrown at a wall with an initial velocity of 21 m/s. If the clay comes to a stop in 91 ms, what is the average force experienced by the clay?  A. 46 N B. 34 N C. 55 N D. 67 N
A golf club exerts an average force of 1000 N on a 0.045-kg golf ball which is initially at rest. The club is in contact with the ball for 1.8 ms. What is the speed of the golf ball as it leaves the tee?A) 45 m/sB) 50 m/sC) 35 m/sD) 30 m/sE) 40 m/s
A 1000-kg car is traveling at 20.0 m/s toward the north (let that be the +y-direction). During a collision, the car receives an impulse of 1.00 x 104 N•s toward the south. What is the velocity of the car after the impulse is applied to the car? A) 10.0 m/s south B) 0.00 m/s C) 20.0 m/s north D) 10.0 m/s north E) 30.0 m/s north 
After a 0.300-kg rubber ball is dropped from a height of 1.75 m, it bounces off a concrete floor and rebounds to a height of 1.50 m. (a) Determine the magnitude and direction of the impulse delivered to the ball by the floor. (b) Estimate the time the ball is in contact with the floor and use this estimate to calculate the average force the floor exerts on the ball.
A baseball of mass 0.190 kg moving at 30.0 m/s strikes the glove of a catcher. The glove recoils a distance of 8.00 cm. The magnitude of the average force applied by the ball on the glove is A) 71.3 N B) 1.07 x 103 N C) 0.731 N D) 10.7 N E) 2.14 x 103 N
A rubber ball of mass m is released from rest at height h above the floor. After its first bounce, it rises to 90% of its original height. What impulse (magnitude and direction) does the floor exert on this ball during its first bounce?