Practice: How much heat energy is needed to increase the temperature of 5 mol of an ideal diatomic gas by from 273K to 300K if the a) pressure is held constant; b) the volume is held constant?
Subjects
All Chapters | ||||
---|---|---|---|---|
Ch 01: Intro to Physics; Units | 1hr & 22mins | 0% complete | ||
Ch 02: 1D Motion / Kinematics | 4hrs & 13mins | 0% complete | ||
Ch 03: Vectors | 2hrs & 43mins | 0% complete | ||
Ch 04: 2D Kinematics | 2hrs | 0% complete | ||
Ch 05: Projectile Motion | 2hrs & 57mins | 0% complete | ||
Ch 06: Intro to Forces (Dynamics) | 3hrs & 20mins | 0% complete | ||
Ch 07: Friction, Inclines, Systems | 2hrs & 43mins | 0% complete | ||
Ch 08: Centripetal Forces & Gravitation | 3hrs & 47mins | 0% complete | ||
Ch 09: Work & Energy | 1hr & 58mins | 0% complete | ||
Ch 10: Conservation of Energy | 2hrs & 54mins | 0% complete | ||
Ch 11: Momentum & Impulse | 3hrs & 45mins | 0% complete | ||
Ch 12: Rotational Kinematics | 3hrs & 3mins | 0% complete | ||
Ch 13: Rotational Inertia & Energy | 7hrs & 4mins | 0% complete | ||
Ch 14: Torque & Rotational Dynamics | 2hrs & 10mins | 0% complete | ||
Ch 15: Rotational Equilibrium | 4hrs & 8mins | 0% complete | ||
Ch 16: Angular Momentum | 3hrs & 6mins | 0% complete | ||
Ch 17: Periodic Motion | 2hrs & 16mins | 0% complete | ||
Ch 19: Waves & Sound | 3hrs & 25mins | 0% complete | ||
Ch 20: Fluid Mechanics | 4hrs & 35mins | 0% complete | ||
Ch 21: Heat and Temperature | 3hrs & 15mins | 0% complete | ||
Ch 22: Kinetic Theory of Ideal Gases | 1hr & 44mins | 0% complete | ||
Ch 23: The First Law of Thermodynamics | 1hr & 28mins | 0% complete | ||
Ch 24: The Second Law of Thermodynamics | 3hrs & 9mins | 0% complete | ||
Ch 25: Electric Force & Field; Gauss' Law | 3hrs & 34mins | 0% complete | ||
Ch 26: Electric Potential | 1hr & 56mins | 0% complete | ||
Ch 27: Capacitors & Dielectrics | 2hrs & 2mins | 0% complete | ||
Ch 28: Resistors & DC Circuits | 3hrs & 20mins | 0% complete | ||
Ch 29: Magnetic Fields and Forces | 2hrs & 34mins | 0% complete | ||
Ch 30: Sources of Magnetic Field | 2hrs & 30mins | 0% complete | ||
Ch 31: Induction and Inductance | 3hrs & 38mins | 0% complete | ||
Ch 32: Alternating Current | 2hrs & 37mins | 0% complete | ||
Ch 33: Electromagnetic Waves | 1hr & 13mins | 0% complete | ||
Ch 34: Geometric Optics | 3hrs | 0% complete | ||
Ch 35: Wave Optics | 1hr & 15mins | 0% complete | ||
Ch 37: Special Relativity | 2hrs & 10mins | 0% complete | ||
Ch 38: Particle-Wave Duality | Not available yet | |||
Ch 39: Atomic Structure | Not available yet | |||
Ch 40: Nuclear Physics | Not available yet | |||
Ch 41: Quantum Mechanics | Not available yet |
Sections | |||
---|---|---|---|
Heat Equations for Special Processes & Molar Specific Heats | 16 mins | 0 completed | Learn |
First Law of Thermodynamics | 24 mins | 0 completed | Learn |
Work Done Through Multiple Processes | 16 mins | 0 completed | Learn |
Cyclic Thermodynamic Processes | 20 mins | 0 completed | Learn |
PV Diagrams & Work | 12 mins | 0 completed | Learn |
Concept #1: Heat Equations for Isobaric & Isovolumetric Processes
Practice: How much heat energy is needed to increase the temperature of 5 mol of an ideal diatomic gas by from 273K to 300K if the a) pressure is held constant; b) the volume is held constant?
Example #1: Calculating Temperature Changes
Join thousands of students and gain free access to 55 hours of Physics videos that follow the topics your textbook covers.
Enter your friends' email addresses to invite them: