Ch 17: Fluid MechanicsSee all chapters
All Chapters
Ch 01: Units & Vectors
Ch 02: 1D Motion (Kinematics)
Ch 03: 2D Motion (Projectile Motion)
Ch 04: Intro to Forces (Dynamics)
Ch 05: Friction, Inclines, Systems
Ch 06: Centripetal Forces & Gravitation
Ch 07: Work & Energy
Ch 08: Conservation of Energy
Ch 09: Momentum & Impulse
Ch 10: Rotational Kinematics
Ch 11: Rotational Inertia & Energy
Ch 12: Torque & Rotational Dynamics
Ch 13: Rotational Equilibrium
Ch 14: Angular Momentum
Ch 15: Periodic Motion (Oscillations)
Ch 16: Waves & Sound
Ch 17: Fluid Mechanics
Ch 18: Heat and Temperature
Ch 19: Kinetic Theory of Ideal Gasses
Ch 20: The First Law of Thermodynamics
Ch 21: The Second Law of Thermodynamics
Ch 22: Electric Force & Field; Gauss' Law
Ch 23: Electric Potential
Ch 24: Capacitors & Dielectrics
Ch 25: Resistors & DC Circuits
Ch 26: Magnetic Fields and Forces
Ch 27: Sources of Magnetic Field
Ch 28: Induction and Inductance
Ch 29: Alternating Current
Ch 30: Electromagnetic Waves
Ch 31: Geometric Optics
Ch 32: Wave Optics
Ch 34: Special Relativity
Ch 35: Particle-Wave Duality
Ch 36: Atomic Structure
Ch 37: Nuclear Physics
Ch 38: Quantum Mechanics
Sections
Density
Intro to Pressure
Pascal's Law & Hydraulic Lift
Pressure Gauge: Barometer
Pressure Gauge: Manometer
Pressure Gauge: U-shaped Tube
Buoyancy & Buoyant Force
Ideal vs Real Fluids
Fluid Flow & Continuity Equation
Additional Sections
Bernoulli's Equation

Concept #1: Intro to Density

Concept #2: Density Values & Specific Gravity

Practice: A wooden door is 1 m wide, 2.5 m tall, 6 cm thick, and weighs 400 N. What is the density of the wood in g/cm3? (use g = 10 m/s2)

Practice: Suppose an 80 kg (176 lb) person has 5.5 L of blood (1,060 kg/m3 ) in their body. How much of this person’s total mass consists of blood? What percentage of the person’s total mass is blood?

Practice: You want to verify if a 70-g crown is in fact made of pure gold (19.32 g/cm3 ), so you lower it by a string into a deep bucket of water that is filled to the top. When the crown is completely submerged, you measure that 3.62 mL of water has overflown. Is the crown made of pure gold?

Additional Problems
Suppose the vessel containing the water and the ice is full: The water level is at the vessel’s rim. What happens once the ice melts? A. The water overflows. B. The level of the water remains at the rim. C. There is not enough information given, the outcome is not definite. D. The level of the water drops below the rim.
A cylinder, 16 cm long and 3 cm in radius, is made of two different metals bonded end-to-end to make a single bar. The densities are 4.4 g/cm3 and 6.3 g/cm3. What length of the lighter-density part of the bar is needed if the total mass is 2377 g? 1. 9.92098 2. 13.1373 3. 7.52775 4. 12.5493 5. 11.7805 6. 10.4417 7. 9.5286 8. 9.69549 9. 8.8057 10. 10.0839
One cubic meter (1.0 m3) of aluminum has a mass of 2700 kg, and a cubic meter of iron has a mass of 7860 kg. Find the radius of a solid aluminum sphere that has the same mass as a solid iron sphere of radius 4.77 cm.
A piece of pipe has an outer radius of 4.7 cm, an inner radius of 2.8 cm, and length of 32 cm as shown in the figure. What is the mass of this pipe? Assume its density is 7.8 g/cm3.
An ice cube floats in a glass of water. As the ice melts, what happens to the water level?a. It rises.b. It remains the samec. It falls by an amount that cannot be determined from the information given.d. It falls by an amount proportional to the volume of the ice cube.e. It falls by an amount proportional to the volume of the ice cube that was initially above the water line.
How long are the sides of an ice cube if its mass is 0.45 kg? ( Express your answer to two significant figures.)