Practice: 3 moles of an ideal gas are compressed isothermally at 20°C. During this compression, 1850 J of work is done on the gas. What is the change of entropy of the gas?
Subjects
All Chapters | ||||
---|---|---|---|---|
Ch 01: Intro to Physics; Units | 1hr & 22mins | 0% complete | ||
Ch 02: 1D Motion / Kinematics | 4hrs & 13mins | 0% complete | ||
Ch 03: Vectors | 2hrs & 43mins | 0% complete | ||
Ch 04: 2D Kinematics | 2hrs | 0% complete | ||
Ch 05: Projectile Motion | 2hrs & 57mins | 0% complete | ||
Ch 06: Intro to Forces (Dynamics) | 3hrs & 20mins | 0% complete | ||
Ch 07: Friction, Inclines, Systems | 2hrs & 43mins | 0% complete | ||
Ch 08: Centripetal Forces & Gravitation | 3hrs & 47mins | 0% complete | ||
Ch 09: Work & Energy | 1hr & 58mins | 0% complete | ||
Ch 10: Conservation of Energy | 2hrs & 54mins | 0% complete | ||
Ch 11: Momentum & Impulse | 3hrs & 45mins | 0% complete | ||
Ch 12: Rotational Kinematics | 3hrs & 3mins | 0% complete | ||
Ch 13: Rotational Inertia & Energy | 7hrs & 4mins | 0% complete | ||
Ch 14: Torque & Rotational Dynamics | 2hrs & 10mins | 0% complete | ||
Ch 15: Rotational Equilibrium | 4hrs & 8mins | 0% complete | ||
Ch 16: Angular Momentum | 3hrs & 6mins | 0% complete | ||
Ch 17: Periodic Motion | 2hrs & 16mins | 0% complete | ||
Ch 19: Waves & Sound | 3hrs & 25mins | 0% complete | ||
Ch 20: Fluid Mechanics | 4hrs & 35mins | 0% complete | ||
Ch 21: Heat and Temperature | 3hrs & 15mins | 0% complete | ||
Ch 22: Kinetic Theory of Ideal Gases | 1hr & 44mins | 0% complete | ||
Ch 23: The First Law of Thermodynamics | 1hr & 28mins | 0% complete | ||
Ch 24: The Second Law of Thermodynamics | 3hrs & 9mins | 0% complete | ||
Ch 25: Electric Force & Field; Gauss' Law | 3hrs & 34mins | 0% complete | ||
Ch 26: Electric Potential | 1hr & 56mins | 0% complete | ||
Ch 27: Capacitors & Dielectrics | 2hrs & 2mins | 0% complete | ||
Ch 28: Resistors & DC Circuits | 3hrs & 20mins | 0% complete | ||
Ch 29: Magnetic Fields and Forces | 2hrs & 34mins | 0% complete | ||
Ch 30: Sources of Magnetic Field | 2hrs & 30mins | 0% complete | ||
Ch 31: Induction and Inductance | 3hrs & 38mins | 0% complete | ||
Ch 32: Alternating Current | 2hrs & 37mins | 0% complete | ||
Ch 33: Electromagnetic Waves | 44mins | 0% complete | ||
Ch 34: Geometric Optics | 3hrs | 0% complete | ||
Ch 35: Wave Optics | 1hr & 15mins | 0% complete | ||
Ch 37: Special Relativity | 2hrs & 10mins | 0% complete | ||
Ch 38: Particle-Wave Duality | Not available yet | |||
Ch 39: Atomic Structure | Not available yet | |||
Ch 40: Nuclear Physics | Not available yet | |||
Ch 41: Quantum Mechanics | Not available yet |
Sections | |||
---|---|---|---|
Heat Engines and the Second Law of Thermodynamics | 32 mins | 0 completed | Learn |
Heat Engines & PV Diagrams | 18 mins | 0 completed | Learn |
The Otto Cycle | 29 mins | 0 completed | Learn |
The Carnot Cycle | 21 mins | 0 completed | Learn |
Refrigerators | 23 mins | 0 completed | Learn |
Entropy and the Second Law of Thermodynamics | 32 mins | 0 completed | Learn |
Entropy Equations for Special Processes | 24 mins | 0 completed | Learn |
Statistical Interpretation of Entropy | 12 mins | 0 completed | Learn |
Concept #1: Intro to Entropy
Practice: 3 moles of an ideal gas are compressed isothermally at 20°C. During this compression, 1850 J of work is done on the gas. What is the change of entropy of the gas?
Practice: You have a block of ice at 0°C. Heat is added to the ice, causing an increase in entropy of 120J/K. How much ice melts into water in this process?
Example #1: Entropy Increase When Braking
Concept #2: Calculating Entropy Changes for Systems of Objects
Practice: A non-Carnot heat engine operates between a hot reservoir at 610K and a cold reservoir at 320K. In a cycle, it takes in 6400 J of heat and does 2200 J of work. What is the total change in entropy of the universe over the cycle?
Example #2: Entropy of Carnot Engine
Join thousands of students and gain free access to 55 hours of Physics videos that follow the topics your textbook covers.
Enter your friends' email addresses to invite them: