Ch 01: Intro to Physics; UnitsWorksheetSee all chapters
All Chapters
Ch 01: Intro to Physics; Units
Ch 02: 1D Motion / Kinematics
Ch 03: Vectors
Ch 04: 2D Kinematics
Ch 05: Projectile Motion
Ch 06: Intro to Forces (Dynamics)
Ch 07: Friction, Inclines, Systems
Ch 08: Centripetal Forces & Gravitation
Ch 09: Work & Energy
Ch 10: Conservation of Energy
Ch 11: Momentum & Impulse
Ch 12: Rotational Kinematics
Ch 13: Rotational Inertia & Energy
Ch 14: Torque & Rotational Dynamics
Ch 15: Rotational Equilibrium
Ch 16: Angular Momentum
Ch 17: Periodic Motion
Ch 19: Waves & Sound
Ch 20: Fluid Mechanics
Ch 21: Heat and Temperature
Ch 22: Kinetic Theory of Ideal Gasses
Ch 23: The First Law of Thermodynamics
Ch 24: The Second Law of Thermodynamics
Ch 25: Electric Force & Field; Gauss' Law
Ch 26: Electric Potential
Ch 27: Capacitors & Dielectrics
Ch 28: Resistors & DC Circuits
Ch 29: Magnetic Fields and Forces
Ch 30: Sources of Magnetic Field
Ch 31: Induction and Inductance
Ch 32: Alternating Current
Ch 33: Electromagnetic Waves
Ch 34: Geometric Optics
Ch 35: Wave Optics
Ch 37: Special Relativity
Ch 38: Particle-Wave Duality
Ch 39: Atomic Structure
Ch 40: Nuclear Physics
Ch 41: Quantum Mechanics
Introduction to Units
Unit Conversions
Solving Density Problems
Dimensional Analysis
Counting Significant Figures
Operations with Significant Figures
Additional Practice

Concept #1: Dimensional Analysis

Practice: A box moving with an initial speed v is accelerated horizontally. If x is measured in [m],
v in [m/s], a in [m/s2], t in [s] which of the following equations is correct for solving the distance x?

Practice: Newton’s Law of Gravitation describes the attraction force between two masses. The equation is


where F is in [ kg·m / s2 ], m1 and m2 are masses in [ kg ], and r is the distance in [ m ] between them.

Determine the units of the Universal Constant G.