Clutch Prep is now a part of Pearson
Ch 27: Capacitors & DielectricsWorksheetSee all chapters
All Chapters
Ch 01: Intro to Physics; Units
Ch 02: 1D Motion / Kinematics
Ch 03: Vectors
Ch 04: 2D Kinematics
Ch 05: Projectile Motion
Ch 06: Intro to Forces (Dynamics)
Ch 07: Friction, Inclines, Systems
Ch 08: Centripetal Forces & Gravitation
Ch 09: Work & Energy
Ch 10: Conservation of Energy
Ch 11: Momentum & Impulse
Ch 12: Rotational Kinematics
Ch 13: Rotational Inertia & Energy
Ch 14: Torque & Rotational Dynamics
Ch 15: Rotational Equilibrium
Ch 16: Angular Momentum
Ch 17: Periodic Motion
Ch 19: Waves & Sound
Ch 20: Fluid Mechanics
Ch 21: Heat and Temperature
Ch 22: Kinetic Theory of Ideal Gases
Ch 23: The First Law of Thermodynamics
Ch 24: The Second Law of Thermodynamics
Ch 25: Electric Force & Field; Gauss' Law
Ch 26: Electric Potential
Ch 27: Capacitors & Dielectrics
Ch 28: Resistors & DC Circuits
Ch 29: Magnetic Fields and Forces
Ch 30: Sources of Magnetic Field
Ch 31: Induction and Inductance
Ch 32: Alternating Current
Ch 33: Electromagnetic Waves
Ch 34: Geometric Optics
Ch 35: Wave Optics
Ch 37: Special Relativity
Ch 38: Particle-Wave Duality
Ch 39: Atomic Structure
Ch 40: Nuclear Physics
Ch 41: Quantum Mechanics
Capacitors & Capacitance
Parallel Plate Capacitors
Energy Stored by Capacitor
Capacitance Using Calculus
Combining Capacitors in Series & Parallel
Solving Capacitor Circuits
Intro To Dielectrics
How Dielectrics Work
Dielectric Breakdown

Concept #1: Dielectric Breakdown


Hey guys. In this video we're going to be talking about a process known as dielectric breakdown, let's get to it. We know that dielectrics are insulators and the insulators charges can't move, right? Well, ideally charges can't move, in reality, if you motivate them enough, if you provide, for instance, a large enough voltage they will move across an insulator, okay? It's very difficult and it doesn't occur commonly but it can occur, one such instance of this is a process known as dielectric breakdown, okay? Just like the dielectric constant Kappa is a fundamental quality of a dielectric, we have a second fundamental quality called the dielectric strength, and what the dielectric strength is, is it's the maximum electric field supported within a dielectric before breakdown occurs. So, if you go past that maximum electric field past that dielectric strength breakdown occurs, in dielectric breakdown what we get, is we get electrons jumping from atom to atom, electrons can exist freely within an insulator like they can in a conductor. So, all they can do is move from one atom to another, when they reach the other atom they sort of knock off the electron that goes to another atom that knocks off an electron goes to another atom etcetera and eventually the electrons cross the insulator like so. They sort of just jump from atom down until they cross the insulator, okay?

A very common example of dielectric breakdown is lightning, in a thunderstorm, we have some sort of thundercloud, that through a process, that we don't really know about, charges separate within this thundercloud, we're going to get an accumulation of positive charges near the top of the thundercloud and negative charges near the bottom of the thundercloud, on the ground this is going to pull positive charges near the surface of the ground, and this separation of charges right here is going to act as a capacitor where the air filling the space between is going to be our dielectric, and eventually if the charge separation becomes large enough, the electric field becomes strong enough, to pass the dielectric strength breakdown occurs and we get lightning, okay?

Let's do a quick example of this. A parallel plate capacitor spills with air and connected to a power source of 100 volts, what is it closest you can put the plates together if dielectric breakdown of air occurs at an electric field of 3 times 10 to the 6 volts per meter. So, 3 times 10 to the 6 volts per meter is the dielectric strength of air. Remember, for air, we're always going to treat the dielectric constant as 1, okay? So, the electric field, right? Max, is 3 times 10 to the 6 volts per meter, this is the dielectric strength, well, within a parallel plate capacitor the electric field is always going to be the voltage over the distance, okay? So, if we want to know the closest distance all we have to do is multiply this distance up and divide this electric field over, okay? So, the distance is going to be V over E max, right? And a larger the electric field is the smaller the distance, that's why, we have the closest distance, right? The smallest distance, for the largest electric field, this is going to be 100 volts over 3 times 10 to the 6, which is going to be about 0.33 times 10 to the negative 4 meters, okay? 0.33 times 10 to negative 4 meters that is our answer. Alright, this wraps up our discussion on dielectric breakdown. Thanks for watching.