Ch. 10 - Addition ReactionsWorksheetSee all chapters
All Chapters
Ch. 1 - A Review of General Chemistry
Ch. 2 - Molecular Representations
Ch. 3 - Acids and Bases
Ch. 4 - Alkanes and Cycloalkanes
Ch. 5 - Chirality
Ch. 6 - Thermodynamics and Kinetics
Ch. 7 - Substitution Reactions
Ch. 8 - Elimination Reactions
Ch. 9 - Alkenes and Alkynes
Ch. 10 - Addition Reactions
Ch. 11 - Radical Reactions
Ch. 12 - Alcohols, Ethers, Epoxides and Thiols
Ch. 13 - Alcohols and Carbonyl Compounds
Ch. 14 - Synthetic Techniques
Ch. 15 - Analytical Techniques: IR, NMR, Mass Spect
Ch. 16 - Conjugated Systems
Ch. 17 - Aromaticity
Ch. 18 - Reactions of Aromatics: EAS and Beyond
Ch. 19 - Aldehydes and Ketones: Nucleophilic Addition
Ch. 20 - Carboxylic Acid Derivatives: NAS
Ch. 21 - Enolate Chemistry: Reactions at the Alpha-Carbon
Ch. 22 - Condensation Chemistry
Ch. 23 - Amines
Ch. 24 - Carbohydrates
Ch. 25 - Phenols
Ch. 26 - Amino Acids, Peptides, and Proteins
Sections
Addition Reaction
Markovnikov
Hydrohalogenation
Acid-Catalyzed Hydration
Oxymercuration
Hydroboration
Hydrogenation
Halogenation
Halohydrin
Carbene
Epoxidation
Epoxide Reactions
Dihydroxylation
Ozonolysis
Ozonolysis Full Mechanism
Oxidative Cleavage
Alkyne Oxidative Cleavage
Alkyne Hydrohalogenation
Alkyne Halogenation
Alkyne Hydration
Alkyne Hydroboration
Additional Practice
Thermodynamics of Addition-Elimination Equilibria
Stereospecificity vs. Stereoselectivity
Sulfonation
Oxymercuration-Reduction Full Mechanism
Hydroboration-Oxidation Full Mechanism
Alkoxymercuation
Interhalogenation
Haloether Formation
Simmons-Smith Addition Mechanism
Regiospecificity of Acid-Catalyzed Ring Openings
Anti Vicinal Dihydroxylation
Ozonolysis Retrosynthesis
LiBr and Acetic Acid for Anti Vinyl Dihaldes
Addition Reagent Facts
Predicting Stereoisomers of Addition Reactions
Addition Missing Reagent
Addition Synthesis
Addition Texas Two-Step
Addition Retrosynthesis
Addition to Concave vs. Convex Rings

Solution: Read these directions carefully. (It was worth repeating) For the reaction of an alkene with water and a small amount of sulfuric acid shown below, fill in the details of the mechanism. Draw the appropriate chemical structures and use an arrow to show how pairs of electrons are moved to make and break bonds during the reaction. For this question, you must draw all molecules produced in each step (yes, these equations need to be balanced!). Finally, fill in the boxes adjacent to the arrows with the type of step involved, such as "Make a bond" or Take a proton away". MAKE SURE TO NOTICE THE QUESTIONS AT THE BOTTOM. If an intermediate or product is chiral, you only need to draw one enantiomer for this problem.During the reaction described by the above mechanism, what happens to the pH of the solution ________________________________Is this reaction catalytic in acid? ___________________________________________One of the above steps involves making a bond between a nucleophile and an electrophile. Draw a circle around the electrophile.

Problem

Read these directions carefully. (It was worth repeating) For the reaction of an alkene with water and a small amount of sulfuric acid shown below, fill in the details of the mechanism. Draw the appropriate chemical structures and use an arrow to show how pairs of electrons are moved to make and break bonds during the reaction. For this question, you must draw all molecules produced in each step (yes, these equations need to be balanced!). Finally, fill in the boxes adjacent to the arrows with the type of step involved, such as "Make a bond" or Take a proton away". MAKE SURE TO NOTICE THE QUESTIONS AT THE BOTTOM. If an intermediate or product is chiral, you only need to draw one enantiomer for this problem.

During the reaction described by the above mechanism, what happens to the pH of the solution ________________________________

Is this reaction catalytic in acid? ___________________________________________

One of the above steps involves making a bond between a nucleophile and an electrophile. Draw a circle around the electrophile.