Ch. 3 - Acids and BasesWorksheetSee all chapters
All Chapters
Ch. 1 - A Review of General Chemistry
Ch. 2 - Molecular Representations
Ch. 3 - Acids and Bases
Ch. 4 - Alkanes and Cycloalkanes
Ch. 5 - Chirality
Ch. 6 - Thermodynamics and Kinetics
Ch. 7 - Substitution Reactions
Ch. 8 - Elimination Reactions
Ch. 9 - Alkenes and Alkynes
Ch. 10 - Addition Reactions
Ch. 11 - Radical Reactions
Ch. 12 - Alcohols, Ethers, Epoxides and Thiols
Ch. 13 - Alcohols and Carbonyl Compounds
Ch. 14 - Synthetic Techniques
Ch. 15 - Analytical Techniques: IR, NMR, Mass Spect
Ch. 16 - Conjugated Systems
Ch. 17 - Aromaticity
Ch. 18 - Reactions of Aromatics: EAS and Beyond
Ch. 19 - Aldehydes and Ketones: Nucleophilic Addition
Ch. 20 - Carboxylic Acid Derivatives: NAS
Ch. 21 - Enolate Chemistry: Reactions at the Alpha-Carbon
Ch. 22 - Condensation Chemistry
Ch. 23 - Amines
Ch. 24 - Carbohydrates
Ch. 25 - Phenols
Ch. 26 - Amino Acids, Peptides, and Proteins

Solution: The compound at right has (for obvious reasons) been given the trivial name squaric acid. Squaric acid is a diprotic acid, with both protons being more acidic than acetic acid. In the dianion obtained after the loss of both protons, all of the carbon–carbon bonds are the same length as well as all of the carbon–oxygen bonds. Provide a resonance explanation for these observations.

Problem

The compound at right has (for obvious reasons) been given the trivial name squaric acid. Squaric acid is a diprotic acid, with both protons being more acidic than acetic acid. In the dianion obtained after the loss of both protons, all of the carbon–carbon bonds are the same length as well as all of the carbon–oxygen bonds. Provide a resonance explanation for these observations.