Ch. 1 - A Review of General ChemistryWorksheetSee all chapters
All Chapters
Ch. 1 - A Review of General Chemistry
Ch. 2 - Molecular Representations
Ch. 3 - Acids and Bases
Ch. 4 - Alkanes and Cycloalkanes
Ch. 5 - Chirality
Ch. 6 - Thermodynamics and Kinetics
Ch. 7 - Substitution Reactions
Ch. 8 - Elimination Reactions
Ch. 9 - Alkenes and Alkynes
Ch. 10 - Addition Reactions
Ch. 11 - Radical Reactions
Ch. 12 - Alcohols, Ethers, Epoxides and Thiols
Ch. 13 - Alcohols and Carbonyl Compounds
Ch. 14 - Synthetic Techniques
Ch. 15 - Analytical Techniques: IR, NMR, Mass Spect
Ch. 16 - Conjugated Systems
Ch. 17 - Aromaticity
Ch. 18 - Reactions of Aromatics: EAS and Beyond
Ch. 19 - Aldehydes and Ketones: Nucleophilic Addition
Ch. 20 - Carboxylic Acid Derivatives: NAS
Ch. 21 - Enolate Chemistry: Reactions at the Alpha-Carbon
Ch. 22 - Condensation Chemistry
Ch. 23 - Amines
Ch. 24 - Carbohydrates
Ch. 25 - Phenols
Ch. 26 - Amino Acids, Peptides, and Proteins

Solution: There are two contributing resonance structures for an anion called acetaldehyde enolate, whose condensed molecular formula is CH2CHO-. Draw the two resonance contributors and the resonance hybrid, then consider the map of electrostatic potential (MEP) shown below for this anion. Comment on whether the MEP is consistent or not with predominance of the resonance contributor you would have predicted to be represented most strongly in the hybrid.

Problem

There are two contributing resonance structures for an anion called acetaldehyde enolate, whose condensed molecular formula is CH2CHO-. Draw the two resonance contributors and the resonance hybrid, then consider the map of electrostatic potential (MEP) shown below for this anion. Comment on whether the MEP is consistent or not with predominance of the resonance contributor you would have predicted to be represented most strongly in the hybrid.