Ch. 15 - Analytical Techniques: IR, NMR, Mass SpectWorksheetSee all chapters
All Chapters
Ch. 1 - A Review of General Chemistry
Ch. 2 - Molecular Representations
Ch. 3 - Acids and Bases
Ch. 4 - Alkanes and Cycloalkanes
Ch. 5 - Chirality
Ch. 6 - Thermodynamics and Kinetics
Ch. 7 - Substitution Reactions
Ch. 8 - Elimination Reactions
Ch. 9 - Alkenes and Alkynes
Ch. 10 - Addition Reactions
Ch. 11 - Radical Reactions
Ch. 12 - Alcohols, Ethers, Epoxides and Thiols
Ch. 13 - Alcohols and Carbonyl Compounds
Ch. 14 - Synthetic Techniques
Ch. 15 - Analytical Techniques: IR, NMR, Mass Spect
Ch. 16 - Conjugated Systems
Ch. 17 - Aromaticity
Ch. 18 - Reactions of Aromatics: EAS and Beyond
Ch. 19 - Aldehydes and Ketones: Nucleophilic Addition
Ch. 20 - Carboxylic Acid Derivatives: NAS
Ch. 21 - Enolate Chemistry: Reactions at the Alpha-Carbon
Ch. 22 - Condensation Chemistry
Ch. 23 - Amines
Ch. 24 - Carbohydrates
Ch. 25 - Phenols
Ch. 26 - Amino Acids, Peptides, and Proteins

Solution: Deuterium (D) is an isotope of hydrogen, in which the nucleus has one proton and one neutron. This nucleus, called a deuteron, behaves very much like a proton, although there are observed differences in the rates of reactions involving either protons or deuterons (an effect called the kinetic isotope effect). Deuterium can be introduced into a compound via the process below:(b) The IR spectrum of compound 4 exhibits a group of signals between 1250 and 1500 cm -1, a signal at 2180 cm-1, and another group of signals between 2800 and 3000 cm -1. Identify the location of the C-D signal in the spectrum and explain your reasoning (J. Chem. Ed. 1981, 58, 79–80).

Problem

Deuterium (D) is an isotope of hydrogen, in which the nucleus has one proton and one neutron. This nucleus, called a deuteron, behaves very much like a proton, although there are observed differences in the rates of reactions involving either protons or deuterons (an effect called the kinetic isotope effect). Deuterium can be introduced into a compound via the process below:

(b) The IR spectrum of compound 4 exhibits a group of signals between 1250 and 1500 cm -1, a signal at 2180 cm-1, and another group of signals between 2800 and 3000 cm -1. Identify the location of the C-D signal in the spectrum and explain your reasoning (J. Chem. Ed. 1981, 58, 79–80).