Ch. 1 - A Review of General ChemistryWorksheetSee all chapters
All Chapters
Ch. 1 - A Review of General Chemistry
Ch. 2 - Molecular Representations
Ch. 3 - Acids and Bases
Ch. 4 - Alkanes and Cycloalkanes
Ch. 5 - Chirality
Ch. 6 - Thermodynamics and Kinetics
Ch. 7 - Substitution Reactions
Ch. 8 - Elimination Reactions
Ch. 9 - Alkenes and Alkynes
Ch. 10 - Addition Reactions
Ch. 11 - Radical Reactions
Ch. 12 - Alcohols, Ethers, Epoxides and Thiols
Ch. 13 - Alcohols and Carbonyl Compounds
Ch. 14 - Synthetic Techniques
Ch. 15 - Analytical Techniques: IR, NMR, Mass Spect
Ch. 16 - Conjugated Systems
Ch. 17 - Aromaticity
Ch. 18 - Reactions of Aromatics: EAS and Beyond
Ch. 19 - Aldehydes and Ketones: Nucleophilic Addition
Ch. 20 - Carboxylic Acid Derivatives: NAS
Ch. 21 - Enolate Chemistry: Reactions at the Alpha-Carbon
Ch. 22 - Condensation Chemistry
Ch. 23 - Amines
Ch. 24 - Carbohydrates
Ch. 25 - Phenols
Ch. 26 - Amino Acids, Peptides, and Proteins

Solution: With current spectroscopic techniques (discussed in Chapters 15–17), chemists are generally able to determine the structure of an unknown organic compound in just one day. These techniques have only been available for the last several decades. In the first half of the twentieth century, structure determination was a very slow and painful process in which the compound under investigation would be subjected to a variety of chemical reactions. The results of those reactions would provide chemists with clues about the structure of the compound. With enough clues, it was sometimes (but not always) possible to determine the structure. As an example, try to determine the structure of an unknown compound, using the following clues: The molecular formula is C4H10N2. There are no π bonds in the structure. The compound has no net dipole moment. The compound exhibits very strong hydrogen bonding. You should note that there are at least two constitutional isomers that are consistent with the information above. (Hint: Consider incorporating a ring in your structure.) 

Problem

With current spectroscopic techniques (discussed in Chapters 15–17), chemists are generally able to determine the structure of an unknown organic compound in just one day. These techniques have only been available for the last several decades. In the first half of the twentieth century, structure determination was a very slow and painful process in which the compound under investigation would be subjected to a variety of chemical reactions. The results of those reactions would provide chemists with clues about the structure of the compound. With enough clues, it was sometimes (but not always) possible to determine the structure. As an example, try to determine the structure of an unknown compound, using the following clues:

  • The molecular formula is C4H10N2.

  • There are no π bonds in the structure.

  • The compound has no net dipole moment.

  • The compound exhibits very strong hydrogen bonding.
    You should note that there are at least two constitutional isomers that are consistent with the information above. (Hint: Consider incorporating a ring in your structure.)