Subjects
Sections | |||
---|---|---|---|
Purpose of Analytical Techniques | 6 mins | 0 completed | Learn |
Infrared Spectroscopy | 16 mins | 0 completed | Learn |
Infrared Spectroscopy Table | 32 mins | 0 completed | Learn Summary |
IR Spect: Drawing Spectra | 41 mins | 0 completed | Learn |
IR Spect: Extra Practice | 27 mins | 0 completed | Learn |
NMR Spectroscopy | 10 mins | 0 completed | Learn |
1H NMR: Number of Signals | 27 mins | 0 completed | Learn Summary |
1H NMR: Q-Test | 28 mins | 0 completed | Learn Summary |
1H NMR: E/Z Diastereoisomerism | 8 mins | 0 completed | Learn |
H NMR Table | 24 mins | 0 completed | Learn Summary |
1H NMR: Spin-Splitting (N + 1) Rule | 25 mins | 0 completed | Learn |
1H NMR: Spin-Splitting Simple Tree Diagrams | 11 mins | 0 completed | Learn |
1H NMR: Spin-Splitting Complex Tree Diagrams | 8 mins | 0 completed | Learn |
1H NMR: Spin-Splitting Patterns | 8 mins | 0 completed | Learn Summary |
NMR Integration | 18 mins | 0 completed | Learn |
NMR Practice | 14 mins | 0 completed | Learn |
Carbon NMR | 7 mins | 0 completed | Learn Summary |
Structure Determination without Mass Spect | 58 mins | 0 completed | Learn Summary |
Mass Spectrometry | 12 mins | 0 completed | Learn |
Mass Spect: Fragmentation | 29 mins | 0 completed | Learn |
Mass Spect: Isotopes | 26 mins | 0 completed | Learn |
Concept #1: Equipment and Theory
Concept #2: How to Read a Mass Spectrum
Transcript
So the base peak of the sample is simply going to be the tallest peak out of all of them and we always scale the base peak to be 100, so that means that we make our base peak 100 and then we compare everything else to that, okay? Now, in this case my base peak happened to be my molecular ion, right? The m plus radical, okay? But, this isn't always the case later on when we talk about fragmentation, what we'll see is that sometimes the base peak is actually going to be one of the fragments because sometimes the fragments are more stable than the molecular ion themselves. So, in this case I gave you a simple situation where the base peak is actually equal to the molecular ion but we're going to see later on is that sometimes one of the smaller fragments is actually your base peak and your molecular ion is lower because it's more common that it fragments than that it doesn't, does that making sense? Awesome guys, so this is just an intro. Now, what we're going to do is we're going to go more into fragmentation patterns and we're going to talk about isotopes, okay? By the way, I want to point out one thing, which is that notice that there is a tiny peak at 17 that I didn't talk about, how did that happen? does that mean it has one extra hydrogen, will get there, okay? That's its own kind of phenomenon but for right now just focus on 16 and below because that's what we can understand through the process of ionization. Alright, so let's move on to the next video.
Join thousands of students and gain free access to 63 hours of Organic videos that follow the topics your textbook covers.
Enter your friends' email addresses to invite them: