Ch. 24 - CarbohydratesWorksheetSee all chapters
All Chapters
Ch. 1 - A Review of General Chemistry
Ch. 2 - Molecular Representations
Ch. 3 - Acids and Bases
Ch. 4 - Alkanes and Cycloalkanes
Ch. 5 - Chirality
Ch. 6 - Thermodynamics and Kinetics
Ch. 7 - Substitution Reactions
Ch. 8 - Elimination Reactions
Ch. 9 - Alkenes and Alkynes
Ch. 10 - Addition Reactions
Ch. 11 - Radical Reactions
Ch. 12 - Alcohols, Ethers, Epoxides and Thiols
Ch. 13 - Alcohols and Carbonyl Compounds
Ch. 14 - Synthetic Techniques
Ch. 15 - Analytical Techniques: IR, NMR, Mass Spect
Ch. 16 - Conjugated Systems
Ch. 17 - Aromaticity
Ch. 18 - Reactions of Aromatics: EAS and Beyond
Ch. 19 - Aldehydes and Ketones: Nucleophilic Addition
Ch. 20 - Carboxylic Acid Derivatives: NAS
Ch. 21 - Enolate Chemistry: Reactions at the Alpha-Carbon
Ch. 22 - Condensation Chemistry
Ch. 23 - Amines
Ch. 24 - Carbohydrates
Ch. 25 - Phenols
Ch. 26 - Amino Acids, Peptides, and Proteins
Sections
Monosaccharide
Monosaccharides - D and L Isomerism
Monosaccharides - Drawing Fischer Projections
Monosaccharides - Common Structures
Monosaccharides - Forming Cyclic Hemiacetals
Monosaccharides - Cyclization
Monosaccharides - Haworth Projections
Mutarotation
Epimerization
Monosaccharides - Aldose-Ketose Rearrangement
Monosaccharides - Alkylation
Monosaccharides - Acylation
Glycoside
Monosaccharides - N-Glycosides
Monosaccharides - Reduction (Alditols)
Monosaccharides - Weak Oxidation (Aldonic Acid)
Reducing Sugars
Monosaccharides - Strong Oxidation (Aldaric Acid)
Monosaccharides - Oxidative Cleavage
Monosaccharides - Osazones
Monosaccharides - Kiliani-Fischer
Monosaccharides - Wohl Degradation
Monosaccharides - Ruff Degradation
Disaccharide
Polysaccharide
Additional Practice
R and S of Sugars
Monosaccharides - Erythro and Threo Isomerism
Monosaccharides - Common Ketoses
Monosaccharides - Pyranose-Furanose Isomerization
Monosaccharides - Overview of Reactions
Monosaccharides - Cyclic Acetals
Monosaccharides - O-Glycoside Hydrolysis

By now you guys should be pro's at monosaccharides, but let's take it a step further and explore what a disaccharide is. In its simplest terms, a disaccharide is two monosaccharides bound by an O-glycosidic linkage (α or β). Below we will take a look at some important ones to remember.

Concept #1

Important Disaccharides:

Practice: Identify the following disaccharides as reducing sugars (RS) or non-reducing sugars (NS)

Practice: Identify the following disaccharides as reducing sugars (RS) or non-reducing sugars (NS)

Practice: Draw a theoretical acid-catalyzed Fischer Glycosidation mechanism for the condensation of D-Glucose into cellubiose. (Note: This reaction would lead to very poor yields of cellubiose- can you hypothesize why?)