Clutch Prep is now a part of Pearson
Ch. 15 - Analytical Techniques: IR, NMR, Mass SpectWorksheetSee all chapters
All Chapters
Ch. 1 - A Review of General Chemistry
Ch. 2 - Molecular Representations
Ch. 3 - Acids and Bases
Ch. 4 - Alkanes and Cycloalkanes
Ch. 5 - Chirality
Ch. 6 - Thermodynamics and Kinetics
Ch. 7 - Substitution Reactions
Ch. 8 - Elimination Reactions
Ch. 9 - Alkenes and Alkynes
Ch. 10 - Addition Reactions
Ch. 11 - Radical Reactions
Ch. 12 - Alcohols, Ethers, Epoxides and Thiols
Ch. 13 - Alcohols and Carbonyl Compounds
Ch. 14 - Synthetic Techniques
Ch. 15 - Analytical Techniques: IR, NMR, Mass Spect
Ch. 16 - Conjugated Systems
Ch. 17 - Aromaticity
Ch. 18 - Reactions of Aromatics: EAS and Beyond
Ch. 19 - Aldehydes and Ketones: Nucleophilic Addition
Ch. 20 - Carboxylic Acid Derivatives: NAS
Ch. 21 - Enolate Chemistry: Reactions at the Alpha-Carbon
Ch. 22 - Condensation Chemistry
Ch. 23 - Amines
Ch. 24 - Carbohydrates
Ch. 25 - Phenols
Ch. 26 - Amino Acids, Peptides, and Proteins
Ch. 26 - Transition Metals
Purpose of Analytical Techniques
Infrared Spectroscopy
Infrared Spectroscopy Table
IR Spect: Drawing Spectra
IR Spect: Extra Practice
NMR Spectroscopy
1H NMR: Number of Signals
1H NMR: Q-Test
1H NMR: E/Z Diastereoisomerism
H NMR Table
1H NMR: Spin-Splitting (N + 1) Rule
1H NMR: Spin-Splitting Simple Tree Diagrams
1H NMR: Spin-Splitting Complex Tree Diagrams
1H NMR: Spin-Splitting Patterns
NMR Integration
NMR Practice
Carbon NMR
Structure Determination without Mass Spect
Mass Spectrometry
Mass Spect: Fragmentation
Mass Spect: Isotopes

Concept #1: Splitting with J-Values: Simple Tree Diagram


In this video we're going to discuss spin splitting with J values and with tree diagrams so essentially this is the complicated version of the spin splitting explanation, now that you understand the simple version you might be wondering do I really need to learn this more complicated version or not? And what I'll tell you is probably not, OK? What is typical is that professors will briefly mention J values and will briefly show a picture of a tree diagram as they're explaining spin splitting, what's less common is that a professor will tell you that you need to know specific J values or that you need to know how to draw a tree diagram if any of those two things come up then you should watch this video, OK? You can also just directly ask you Professor will I be asked to draw a tree diagram? And if the answer is no then you probably don't need to watch this video, OK? But in the event that you do, here we go, OK?

So coupling constants also known as J values, OK? Describe the amount of interaction that a proton will have another so it's kind of quantification of the interaction, OK? And here are some examples of common coupling constants that are on frequently reviewed so vicinal protons that would be 2 non-equivalent protons that are just next to each otherÕs so this would be like a typical splitting example that we would have seen in the last video that would have a split of anywhere from 6 to 8 hertz, OK? These interferences you know or these interactions are always described in a Hertz frequency, OK? Now Cis protons so that would mean protons that are split....that are separated by a Cis double bond usually interact anywhere from 7 to 12 and trans protons have a J value from anywhere between 13 to 18 so kind of like I ordered it here in order, now this is not a comprehensive list of all the J values if your professor says that they want you to know specific J values then you should definitely refer to his resources so that you can make sure that you know all the ones that they want you to know but these are the three most common that's for sure, OK? So remember that we discussed in the more simplistic version of spin splitting that you could use Pascal's Triangle to predict the shapes of splits that you get but it turns out that Pascal's triangle only works if you assume that all of your J values are exactly the same, OK? So basically the whole reason that we could get those very predictable splits is because we're assuming that everything is splitting exactly the same that all of your hertz all your J values are the same but once you introduce the idea of multiple J values, multiple coupling constants being involved with splitting the same proton pascals triangle no longer applies in fact Pascal's Triangle is actually going to give you the wrong answer because instead of everything splitting evenly you got different coupling constants layering on top of each other making weird shapes so in that case in order to predict what the split is actually going to look like you have to use a tool that we call a tree diagram, the tree diagram is our way of visualizing how the splits are going to work and how they're going to happen in order so that we can get the final shape of the split meaning that if we predicted that something was a quartet before the shape might be different now that we're using a tree diagram, OK? So what I want to show you first is drawing a simple tree diagram and I'm going to use a simple explanation of one that the N+1 rule would have worked on so for example in this molecule notice that it says that basically I'm trying to figure out how Ha my bolded proton is going to be split, OK? And what I notice is that well first of all Ha over here is that one going to split it? No we're not going to get split by the other Ha because that's not adjacent that's actually on the same carbon it's also not.... ItÕs its equivalent so I don't even have to look at that, OK? Now we also talked about how OH is a wall so we're not going to get split over here either so that means that this Ha is only going to be split on one side, correct? It's going to be split on the left side, how many protons will be split by? 3, notice that all 3 protons are the same exact type of proton they're all Homotopic, OK? And they all have the same exact J Coupling J value or coupling constant of 6 Hertz, OK? So that means that in this case are all of my J values the same? Yes, they are because I have 3 protons that are all splitting with a J value of 6, OK? So that means that Pascal's Triangle should actually work in this example I should not have to draw a tree diagram to figure out what it's going to look like, OK? If I use the N+1 rule here, N is equal to what number? 3+1 so that means that what type of split should I get if I have 3+1? It means it should be a quartet, OK? It should be a quartet according to N+1 and what shape does a quartet predict according to Pascal's triangle? That means it should be a ratio of 1:3:3:1 that should be familiar to you so far, OK? But now what I'm going to do is I'm actually going to draw the whole tree diagram for this so you can see how to actually correct so let's start off with Ha. Ha is singlet by itself, OK? This is Ha by itself this is before it gets split, OK? Now in this graph this is basically graph paper I could give it any unit I want but let's just go with I think I have enough space to make every single unit equal to 1, OK? So that means that in my first split, I'm going to split every I'm going to go down as many layers as I have splits or coupling constants to split with so in my first one I'm going to split 3 on one side 3 on the other making my first split that is represented by each Hb 1, OK? Notice that I'm going to have Hb1 Hb2 and HB3 and all 3 of these are going to have a generation to split, OK? So basically what I have so far is that I had a singlet and now it just turned into a doublet with a distance of 6 Hertz, OK? This is now a doublet if I were to draw exactly if I were to represent this as a peak it would look something like this it would be a peak here and a peak here a doublet but I'm not done if I were to end there though be what it looks like but I only split with the first proton I still need to split with the others so now let's go ahead and split with HB2. HB2 is going to split both of these into 6 so I'm going to get 6 over here and I'm going to get 6 over here, OK? What that's going to give me is that now this is the split that I get from HB2 and what I now get is I mean these are still a distance of 6 Hertz each I'm not going to write this every time I'm just going to write this again so you can see these are now distance of 6 Hertz each but the important part is that now what would this look like if I were to start drawing it right now? Well what I would have is a ratio of 1:2:1, now why do I put 2 in the middle? Well because notice that 3 of the splits actually merged into one line that means that the.... Basically the amplitude of the interference in that area is actually going to be double that of the ones on the periphery, does that 1:2:1 ratio look familiar? Yes that's the ratio of a triplets but we're not done yet because you still have that last proton to split with so I'm going to erase that for now and we're going to split with our last proton HB3 all these lines have to get split so I'm going to split....Ops I'm trying to use green here and I'm going to split this one, I'm going to split this one and I'm going to split this one, by the way guys just so you know I know you've never done this before the height that I'm using you notice how I was using 3 units each that's completely irrelevant I just decided to do that because that was how much space I was given the whole point is that you just try to keep even however much downward you're drawing just try to draw that with every generation of split, OK? So this is Hb3 our final split and what we notice is what are the ratios going to be now? Well think of this almost like Pascal's Triangle whatever the top was it's going to add up to the bottom split so that means that up here I had a 1:2:1 ratio that means that the splits here are going to be now a 1:3(1+2): 3:1 ratio, right? Because 1 and 2 again make 3 and I've got 1 on the side, does this ratio look familiar 1:3:3:1? Yea guys that is the ratio for our final answer which is a quartet which if I were to draw would look something like this...Looks familiar, right? This is a quartet so now a very legitimate question you should be asking me is Johnny if we already have Pascal's Triangle if we already have the N+1 rule why did you just go through this whole exercise of doing something that just gave me the same exact answer? Well because what I'm trying to show you is how you don't need to do this if all your J values are the same, if they're all the same please skip the hassle we can already do this with Pascal's Triangle, OK? So then why would I ever need to use a tree diagram? You use a tree diagram if you have different J values in the same split, OK? So let's go ahead and turn the page and see how that might be the case.