Clutch Prep is now a part of Pearson
Ch. 12 - Microbial MetabolismWorksheetSee all chapters
All Chapters
Ch. 1 - Introduction to Microbiology
Ch. 2 - Disproving Spontaneous Generation
Ch. 3 - Chemical Principles of Microbiology
Ch. 4 - Water
Ch. 5 - Molecules of Microbiology
Ch. 6 - Cell Membrane & Transport
Ch. 7 - Prokaryotic Cell Structures & Functions
Ch. 8 - Eukaryotic Cell Structures & Functions
Ch. 9 - Microscopes
Ch. 10 - Dynamics of Microbial Growth
Ch. 11 - Controlling Microbial Growth
Ch. 12 - Microbial Metabolism
Ch. 13 - Photosynthesis
Ch. 15 - DNA Replication
Ch. 16 - Central Dogma & Gene Regulation
Ch. 17 - Microbial Genetics
Ch. 18 - Biotechnology
Ch. 21 - Viruses, Viroids, & Prions
Ch. 22 - Innate Immunity
Ch. 23 - Adaptive Immunity
Ch. 24 - Principles of Disease
Sections
Introduction to Energy
Laws of Thermodynamics
Chemical Reactions
ATP
Enzymes
Enzyme Activation Energy
Enzyme Binding Factors
Enzyme Inhibition
Introduction to Metabolism
Negative & Positive Feedback
Redox Reactions
Introduction to Aerobic Cellular Respiration
Types of Phosphorylation
Glycolysis
Entner-Doudoroff Pathway
Pentose-Phosphate Pathway
Pyruvate Oxidation
Krebs Cycle
Electron Transport Chain
Chemiosmosis
Review of Aerobic Cellular Respiration
Fermentation & Anaerobic Respiration

Concept #1: Chemiosmosis

Practice: Chemiosmotic creation of ATP is driven by:

a) Phosphate transfer through the plasma membrane.

b) Potential energy of the H+ concentration gradient created by the electron transport chain.

c) Substrate-level phosphorylation in the mitochondrial matrix.

d) Large quantities of ADP in the mitochondrial matrix.

Practice: The electron transport chain pumps H+ ions into which location of the mitochondria?

a) Mitochondrial intermembrane space. 

b) Mitochondrial matrix.

c)  Mitochondrial inner membrane.

d) The H+ ions are pumped out of the mitochondria.