Practice: A sample of nitrogen dioxide gas at 130 ºC and 315 torr occupies a volume of 500 mL. What will the gas pressure be if the volume is reduced to 320 mL at 130 ºC?
The Ideal Gas Law Derivations are a convenient way to solve gas calculations involving 2 sets of the same variables.
Concept #1: The Ideal Gas Law Derivations
Example #1: A sample of sulfur hexachloride gas occupies 8.30 L at 202 ºC. Assuming that the pressure remainsconstant, what temperature (in ºC) is needed to decrease the volume to 5.25 L?
Practice: A sample of nitrogen dioxide gas at 130 ºC and 315 torr occupies a volume of 500 mL. What will the gas pressure be if the volume is reduced to 320 mL at 130 ºC?
Practice: A cylinder with a movable piston contains 0.615 moles of gas and has a volume of 295 mL. What will its volume be if 0.103 moles of gas escaped?
Practice: On most spray cans it is advised to never expose them to fire. A spray can is used until all that remains is the propellant gas, which has a pressure of 1350 torr at 25 ºC. If the can is then thrown into a fire at 455 ºC, what will be the pressure (in torr) in the can?
a) 750 torr
b) 1800 torr
c) 2190 torr
d) 2850 torr
e) 3300 torr