Practice: Predict the products formed from the following gas evolution equation.
Subjects
All Chapters | ||||
---|---|---|---|---|
Ch.1 Matter and Measurements | 4hrs & 24mins | 0% complete | ||
Ch.2 Atoms and the Periodic Table | 5hrs & 14mins | 0% complete | ||
Ch.3 Ionic Compounds | 2hrs & 11mins | 0% complete | ||
Ch.4 Molecular Compounds | 2hrs & 14mins | 0% complete | ||
Ch.5 Classification & Balancing of Chemical Reactions | 3hrs & 17mins | 0% complete | ||
Ch.6 Chemical Reactions & Quantities | 2hrs & 36mins | 0% complete | ||
Ch.7 Energy, Rate and Equilibrium | 3hrs & 32mins | 0% complete | ||
Ch.8 Gases, Liquids and Solids | 3hrs & 34mins | 0% complete | ||
Ch.9 Solutions | 4hrs & 11mins | 0% complete | ||
Ch.10 Acids and Bases | 3hrs & 30mins | 0% complete | ||
Ch.11 Nuclear Chemistry | 55mins | 0% complete | ||
BONUS: Lab Techniques and Procedures | 1hr & 30mins | 0% complete | ||
BONUS: Mathematical Operations and Functions | 47mins | 0% complete |
Sections | |||
---|---|---|---|
Acid-Base Introduction | 9 mins | 0 completed | Learn |
Arrhenius Acid and Base | 7 mins | 0 completed | Learn |
Bronsted Lowry Acid and Base | 18 mins | 0 completed | Learn |
Acid and Base Strength | 16 mins | 0 completed | Learn |
Ka and Kb | 12 mins | 0 completed | Learn |
The pH Scale | 20 mins | 0 completed | Learn |
Auto-Ionization | 6 mins | 0 completed | Learn |
pH of Strong Acids & Bases | 12 mins | 0 completed | Learn |
Acid-Base Equivalents | 14 mins | 0 completed | Learn |
Acid-Base Reactions | 7 mins | 0 completed | Learn |
Gas Evolution Equations (Simplified) | 6 mins | 0 completed | Learn |
Ionic Salts (Simplified) | 24 mins | 0 completed | Learn |
Buffers | 28 mins | 0 completed | Learn |
Henderson-Hasselbalch Equation | 22 mins | 0 completed | Learn |
Strong Acid Strong Base Titrations (Simplified) | 10 mins | 0 completed | Learn |
A Gas Evolution Equation is a molecular equation that involves the creation of specific gases.
Concept #1: Gas Evolution Equations
CO2 gas is formed once median products lose a water molecule.
Example #1: Predict whether a chemical reaction occurs and write the balanced molecular equation.
Practice: Predict the products formed from the following gas evolution equation.
Join thousands of students and gain free access to 0 hours of GOB videos that follow the topics your textbook covers.
Enter your friends' email addresses to invite them: