All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds
Sections
Pressure Units
The Ideal Gas Law
The Ideal Gas Law Derivations
The Ideal Gas Law Applications
Chemistry Gas Laws
Chemistry Gas Laws: Combined Gas Law
Mole Fraction
Partial Pressure
The Ideal Gas Law: Molar Mass
The Ideal Gas Law: Density
Gas Stoichiometry
Standard Temperature and Pressure
Effusion
Root Mean Square Speed
Kinetic Energy of Gases
Maxwell-Boltzmann Distribution
Velocity Distributions
Kinetic Molecular Theory
Van der Waals Equation
Additional Practice
Manometer
Collecting Gas Over Water
Additional Guides
Boyle's Law
Charles Law
Ideal Gas Law

The Ideal Gas Law Derivations are a convenient way to solve gas calculations involving 2 sets of the same variables. 

Ideal Gas Law Derivations

Concept #1: The Ideal Gas Law Derivations

Example #1: A sample of sulfur hexachloride gas occupies 8.30 L at 202 ºC. Assuming that the pressure remainsconstant, what temperature (in ºC) is needed to decrease the volume to 5.25 L?

Practice: A sample of nitrogen dioxide gas at 130 ºC and 315 torr occupies a volume of 500 mL. What will the gas pressure be if the volume is reduced to 320 mL at 130 ºC?

Practice: A cylinder with a movable piston contains 0.615 moles of gas and has a volume of 295 mL. What will its volume be if 0.103 moles of gas escaped?

Practice: On most spray cans it is advised to never expose them to fire. A spray can is used until all that remains is the propellant gas, which has a pressure of 1350 torr at 25 ºC. If the can is then thrown into a fire at 455 ºC, what will be the pressure (in torr) in the can?

a) 750 torr

b) 1800 torr

c) 2190 torr

d) 2850 torr

e) 3300 torr