Ch.4 - Chemical Quantities & Aqueous ReactionsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds
Solubility Rules
Molecular Equations
Gas Evolution Equations
Solution Stoichiometry
Complete Ionic Equations
Calculate Oxidation Numbers
Redox Reactions
Balancing Redox Reactions: Acidic Solutions
Balancing Redox Reactions: Basic Solutions
Activity Series
Additional Practice
Types of Chemical Reactions
Normality & Equivalent Weight
Additional Guides
Oxidation Reduction (Redox) Reactions
Oxidation Number
Net Ionic Equation

Solution Stoichiometry deals with stoichiometric calculations in solutions that involve volume and molarity.

Solution Stoichiometry

Concept #1: Solution Stoichiometry

Use the solution stoichiometric chart when dealing with calculations involving molarity and/or volume. 

Example #1: How many moles of hydrogen gas were produced when 38.74 mL of 0.275 M H2O reacts with excess sodium?

Practice: How many milliliters of 0.325 M HCl are needed to react with 16.2 g of magnesium metal? 

2 HCl (aq) + Mg (s) → MgCl2 + H2 (g)

Practice: What is the molar concentration of a hydrobromic acid solution if it takes 34.12 mL of HBr to completely neutralize 82.56 mL of 0.156 M Ca(OH)­2

2 HBr (aq) + Ca(OH)2 (aq)  → CaBr2 (aq) + 2 H2O (l)

Practice: Consider the following balanced chemical equation: 

H2O+ 2 MnO4 + 3 SO32-  → 2 MnO2 + 3 SO42-+ 2 OH

How many grams of MnO2 (MW: 86.94 g/mol) will be created when 25.0 mL of 0.120 M MnO4 (MW: 118.90 g/mol) reacts with 32.0 mL of 0.140 M SO32- (MW: 80.07 g/mol).