# Problem: Calculate the pressure exerted by 1.00 mol of Ne in a box that is 0.300 L and 298 K. For Ne, a = 0.211 L2 atm/mol2 and b = 0.0171 L/mol.

###### FREE Expert Solution

We’re being asked to calculate the pressure exerted by a Ne in a box using the Van der Waal’s equation

The Van der Waals equation is shown below:

$\overline{)\left(\mathbf{P}\mathbf{+}\mathbf{a}\frac{{\mathbf{n}}^{\mathbf{2}}}{{\mathbf{V}}^{\mathbf{2}}}\right)\left(\mathbf{V}\mathbf{-}\mathbf{n}\mathbf{b}\right){\mathbf{=}}{\mathbf{n}}{\mathbf{R}}{\mathbf{T}}}$

P = pressure, atm
V = volume, L
n = # of moles, mol
R = gas constant = 0.08206 (Latm)/(molK)
T = temperature, K
a = polarity coefficient
= size coefficient

Let’s first isolate the pressure in the Van der Waals Equation:

97% (156 ratings)
###### Problem Details

Calculate the pressure exerted by 1.00 mol of Ne in a box that is 0.300 L and 298 K. For Ne, a = 0.211 L2 atm/mol2 and b = 0.0171 L/mol.

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Van der Waals Equation concept. You can view video lessons to learn Van der Waals Equation. Or if you need more Van der Waals Equation practice, you can also practice Van der Waals Equation practice problems.