🤓 Based on our data, we think this question is relevant for Professor Ernst's class at UTAH.

We are asked to calculate the theoretical yield of ammonia, in kilograms, that we can synthesize from 5.39 kg of H_{2} and 33.5 kg of N_{2}

3 H_{2}(g) + N_{2}(g) → 2 NH_{3}(g)

Calculate the yield based on both reactants:

Molar mass H_{2} = 2.02 g/mol

Molar mass N_{2} = 28.02 g/mol

For H_{2}:

$\mathbf{5}\mathbf{.}\mathbf{39}\mathbf{}\overline{)\mathbf{kg}\mathbf{}{\mathbf{H}}_{\mathbf{2}}\mathbf{}}\mathbf{\times}\mathbf{}\frac{{\mathbf{10}}^{\mathbf{3}}\mathbf{}\mathbf{}\overline{)\mathbf{g}\mathbf{}}}{\mathbf{1}\mathbf{}\mathbf{}\overline{)\mathbf{kg}\mathbf{}}}\mathbf{\times}\frac{\mathbf{1}\mathbf{}\overline{)\mathbf{mol}\mathbf{}{\mathbf{H}}_{\mathbf{2}}\mathbf{}}}{\mathbf{2}\mathbf{.}\mathbf{02}\mathbf{}\overline{)\mathbf{kg}\mathbf{}{\mathbf{H}}_{\mathbf{2}}\mathbf{}}}\mathbf{\times}\frac{\mathbf{2}\mathbf{}\mathbf{}\overline{)\mathbf{mol}\mathbf{}{\mathbf{NH}}_{\mathbf{3}}\mathbf{}}}{\mathbf{3}\mathbf{}\mathbf{}\overline{)\mathbf{mol}\mathbf{}{\mathbf{H}}_{\mathbf{2}}\mathbf{}}}\mathbf{\times}\frac{\mathbf{17}\mathbf{.}\mathbf{04}\mathbf{}\mathbf{}\overline{)\mathbf{g}\mathbf{}{\mathbf{NH}}_{\mathbf{3}}\mathbf{}}}{\mathbf{1}\mathbf{}\overline{)\mathbf{mol}\mathbf{}{\mathbf{NH}}_{\mathbf{3}}\mathbf{}}}\mathbf{\times}\frac{\mathbf{1}\mathbf{}\mathbf{k}\mathbf{g}}{{\mathbf{10}}^{\mathbf{3}}\mathbf{}\overline{)\mathbf{g}\mathbf{}}}$

**= 30.31 kg NH**_{3}

Ammonia can also be synthesized by the reaction:

3H_{2}(g) + N_{2}(g) → 2NH_{3}(g)

What is the theoretical yield of ammonia, in kilograms, that we can synthesize from 5.39 kg of H_{2} and 33.5 kg of N_{2}?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Limiting Reagent concept. If you need more Limiting Reagent practice, you can also practice Limiting Reagent practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Ernst's class at UTAH.