Ch.3 - Chemical ReactionsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: The foul odor of rancid butter is due largely to butyric acid, a compound containing carbon, hydrogen, and oxygen. Combustion analysis of a 4.30-g sample of butyric acid produced 8.59 g CO2 and 3.52 g H2 O.Find the empirical formula for butyric acid.

Solution: The foul odor of rancid butter is due largely to butyric acid, a compound containing carbon, hydrogen, and oxygen. Combustion analysis of a 4.30-g sample of butyric acid produced 8.59 g CO2 and 3.52 g

Problem

The foul odor of rancid butter is due largely to butyric acid, a compound containing carbon, hydrogen, and oxygen. Combustion analysis of a 4.30-g sample of butyric acid produced 8.59 g CO2 and 3.52 g H2 O.

Find the empirical formula for butyric acid.

Solution

The formula for the unknown compound is CxHyOz. The combustion reaction of the unknown is:

CxHyOz + O2 → x CO2 + y H2O

From this, we can see that all of the CO2 and H2O formed came from the unknown. Complete combustion of 4.30 g of butyric acid produced 8.59 g CO2 and 3.52 g H2O.

Solution BlurView Complete Written Solution