All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: A scuba diver creates a spherical bubble with a radius of 3.5 cm at a depth of 30.0 m where the total pressure (including atmospheric pressure) is 4.00 atm.What is the radius of the bubble when it reaches the surface of the water? (Assume atmospheric pressure to be 1.00 atm and the temperature to be 298 K.)

Solution: A scuba diver creates a spherical bubble with a radius of 3.5 cm at a depth of 30.0 m where the total pressure (including atmospheric pressure) is 4.00 atm.What is the radius of the bubble when it rea

Problem

A scuba diver creates a spherical bubble with a radius of 3.5 cm at a depth of 30.0 m where the total pressure (including atmospheric pressure) is 4.00 atm.

What is the radius of the bubble when it reaches the surface of the water? (Assume atmospheric pressure to be 1.00 atm and the temperature to be 298 K.)

Solution

We’re being asked to determine the radius of the bubble when it reaches the surface of the water at 1.00 atm and 298 K if the radius of the spherical bubble at a depth of 30.0 m and a total pressure of 4.00 atm is 3.5 cm.


Recall that the ideal gas law is:


PV=nRT


The pressure and volume of a gas are related to the number of moles, gas constant and temperatureThe value nRT is constant(assuming T = 298 K at a depth of 30.0 m)


Solution BlurView Complete Written Solution