# Problem: Ammonium nitrate decomposes explosively upon heating according to the following balanced equation: 2 NH4NO3(s) → 2 N2(g) + O2(g) + 4 H2O(g). Calculate the total volume of gas (at 126˚C and 751 mmHg) produced by the complete decomposition of 1.56 kg of ammonium nitrate.

###### FREE Expert Solution

Recall the Ideal Gas Law equation:

$\overline{){\mathbf{PV}}{\mathbf{=}}{\mathbf{nRT}}}$

Step 1. mol reactant

molar mass of NH4NO3 = 80.043 g/mol

16.2 mol

Step 2. volume of each product

$\mathbf{PV}\mathbf{=}\mathbf{nRT}\phantom{\rule{0ex}{0ex}}\frac{\overline{)\mathbf{P}}\mathbf{V}}{\overline{)\mathbf{P}}}\mathbf{=}\frac{\mathbf{nRT}}{\mathbf{P}}\phantom{\rule{0ex}{0ex}}\overline{){\mathbf{V}}{\mathbf{=}}\frac{\mathbf{nRT}}{\mathbf{P}}}$

P = 751 mmHg = 0.988 atm
T = 126˚C + 273.15 = 399.15 K
R = 0.08206 (L·atm)/(mol·K)

91% (182 ratings) ###### Problem Details

Ammonium nitrate decomposes explosively upon heating according to the following balanced equation: 2 NH4NO3(s) → 2 N2(g) + O2(g) + 4 H2O(g). Calculate the total volume of gas (at 126˚C and 751 mmHg) produced by the complete decomposition of 1.56 kg of ammonium nitrate.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Gas Stoichiometry concept. You can view video lessons to learn Gas Stoichiometry. Or if you need more Gas Stoichiometry practice, you can also practice Gas Stoichiometry practice problems.