Recall the Ideal Gas Law equation:

$\overline{){\mathbf{PV}}{\mathbf{=}}{\mathbf{nRT}}}$

**Step 1. **mol reactant

molar mass of NH_{4}NO_{3} = **80.043 g/mol**

$\mathbf{1}\mathbf{.}\mathbf{56}\mathbf{}\overline{)\mathbf{kg}\mathbf{}{\mathbf{NH}}_{\mathbf{4}}{\mathbf{NO}}_{\mathbf{3}}}\mathbf{\times}\frac{{\mathbf{10}}^{\mathbf{3}}\mathbf{}\overline{)\mathbf{g}}}{\mathbf{1}\mathbf{}\overline{)\mathbf{kg}}}\mathbf{\times}\frac{\mathbf{1}\mathbf{}\mathbf{mol}\mathbf{}{\mathbf{NH}}_{\mathbf{4}}{\mathbf{NO}}_{\mathbf{3}}}{\mathbf{96}\mathbf{.}\mathbf{09}\mathbf{}\overline{)\mathbf{g}\mathbf{}{\mathbf{NH}}_{\mathbf{4}}{\mathbf{NO}}_{\mathbf{3}}}}\mathbf{=}$**16.2 mol**

**Step 2. **volume of each product

$\mathbf{PV}\mathbf{=}\mathbf{nRT}\phantom{\rule{0ex}{0ex}}\frac{\overline{)\mathbf{P}}\mathbf{V}}{\overline{)\mathbf{P}}}\mathbf{=}\frac{\mathbf{nRT}}{\mathbf{P}}\phantom{\rule{0ex}{0ex}}\overline{){\mathbf{V}}{\mathbf{=}}\frac{\mathbf{nRT}}{\mathbf{P}}}$

P = 751 mmHg** = 0.988 atm**

T = 126˚C + 273.15 = **399****.15 K**

R =** 0.08206 (L·atm)/(mol·K)**

Ammonium nitrate decomposes explosively upon heating according to the following balanced equation: 2 NH_{4}NO_{3}(s) → 2 N_{2}(g) + O_{2}(g) + 4 H_{2}O(g). Calculate the total volume of gas (at 126˚C and 751 mmHg) produced by the complete decomposition of 1.56 kg of ammonium nitrate.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Gas Stoichiometry concept. If you need more Gas Stoichiometry practice, you can also practice Gas Stoichiometry practice problems.