Calculate the initial to total pressure using the ideal gas equation:

$\overline{)\mathbf{PV}\mathbf{=}\mathbf{nRT}}$

molar mass Ar = 39.95 g

$\mathbf{moles}\mathbf{}\mathbf{Ar}\mathbf{=}\mathbf{30}\mathbf{.}\mathbf{1}\mathbf{}\overline{)\mathbf{g}}\mathbf{\times}\frac{\mathbf{1}\mathbf{}\mathbf{mol}}{\mathbf{39}\mathbf{.}\mathbf{95}\mathbf{}\overline{)\mathbf{g}}}$

**moles Ar = 0.7534 mol**

$\mathbf{P}\mathbf{=}\frac{\mathbf{nRT}}{\mathbf{V}}\phantom{\rule{0ex}{0ex}}\mathbf{P}\mathbf{=}\frac{(0.7534\overline{)\mathrm{mol}})(0.08206{\displaystyle \frac{\overline{)L}\xb7\mathrm{atm}}{\overline{)\mathrm{mol}}\xb7\overline{)K}}})(297\overline{)K})}{(59.6\overline{)\mathrm{mL}}\times {\displaystyle \frac{{10}^{-3}\overline{)L}}{1\overline{)\mathrm{mL}}}})}$

**P = 308.1 atm**

Calculate the final pressure using **Boyle's Law**:

$\overline{){\mathbf{P}}_{\mathbf{1}}{\mathbf{V}}_{\mathbf{1}}\mathbf{=}{\mathbf{P}}_{\mathbf{2}}{\mathbf{V}}_{\mathbf{2}}}\phantom{\rule{0ex}{0ex}}$

P_{1} = 308.1 torr

V_{1} = 59.6 mL

P_{2} = 1.26 atm

A wine-dispensing system uses argon canisters to pressurize and preserve wine in the bottle. An argon canister for the system has a volume of 59.6 mL and contains 30.1 g of argon.

When the argon is released from the canister it expands to fill the wine bottle. How many 750.0-mL wine bottles can be purged with the argon in the canister at a pressure of 1.26 atm and a temperature of 297 K ?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the The Ideal Gas Law Derivations concept. You can view video lessons to learn The Ideal Gas Law Derivations. Or if you need more The Ideal Gas Law Derivations practice, you can also practice The Ideal Gas Law Derivations practice problems.