Ch.12 - SolutionsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Although other solvents are available, dichloromethane (CH2Cl2) is still often used to “decaffeinate” drinks because the solubility of caffeine in CH2Cl2 is 8.35 times that in water.(a) A 100.0-mL sam

Problem

Although other solvents are available, dichloromethane (CH2Cl2) is still often used to “decaffeinate” drinks because the solubility of caffeine in CH2Cl2 is 8.35 times that in water.

(a) A 100.0-mL sample of cola containing 10.0 mg of caffeine is extracted with 60.0 mL of CH2Cl2. What mass of caffeine remains in the aqueous phase?
(b) A second identical cola sample is extracted with two successive 30.0-mL portions of CH2Cl2. What mass of caffeine remains in the aqueous phase after each extraction?

(c) Which approach extracts more caffeine?