Problem: The following data were obtained for the gas‑phase decomposition of dinitrogen pentoxide,2 N2O5 (g) → 4 NO2 (g) + O2 (g)Defining the rate as -Δ[N2O5] / Δt, write the rate law and calculate the value of the rate constant.

🤓 Based on our data, we think this question is relevant for Professor De Mesa's class at BAYLOR.

FREE Expert Solution

Recall that the rate law only focuses on the reactant concentrations and has a general form of:

rate law=kAxBy

k = rate constant
A & B = reactants
x & y = reactant orders



Step 1. Calculate the order of the reaction with respect to N2O5.

Use experimental data 1 and 2 (you can use any):


rate 2rate 1=N2O4x at rate 2N2O4x at rate 1

x = order

(Larger concentration should be on the numerator)

Solve for x:

2.26×10-38.90×10-4=0.190x0.0750x

since the numerator and the denominator are raised to the same power, you can simplify the equation to:

2.26×10-38.90×10-4=0.1900.0750x2.53=2.53x

2.53 raised to the power of 1 = 2.53

x = 1 → 1st order with respect to N2O5



Step 2. Determine the rate law of the reaction

rate law=kAxBy

Substitute N2O5 and O2 and their orders:

rate law = k[N2O5]1

or simply

rate = k[N2O5]


Step 3. Calculate the value of the rate constant

View Complete Written Solution
Problem Details

The following data were obtained for the gas‑phase decomposition of dinitrogen pentoxide,

2 N2O(g) → 4 NO2 (g) + O(g)

Defining the rate as -Δ[N2O5] / Δt, write the rate law and calculate the value of the rate constant.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Rate Law concept. You can view video lessons to learn Rate Law. Or if you need more Rate Law practice, you can also practice Rate Law practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor De Mesa's class at BAYLOR.

What textbook is this problem found in?

Our data indicates that this problem or a close variation was asked in Chemistry: An Atoms First Approach - Zumdahl 2nd Edition. You can also practice Chemistry: An Atoms First Approach - Zumdahl 2nd Edition practice problems.