Ch. 17 - Chemical ThermodynamicsSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Calculate ΔG at 298 K for a mixture of 1.0 atm N 2, 3.0 atm H2, and 0.50 atm NH3 being used in the Haber process: The Gibbs energy of formation of ammonia is -16.4 kJ/mol.  N2 (g) + 3 H2 (g) ↔ 2 NH3 (g)

Problem

Calculate ΔG at 298 K for a mixture of 1.0 atm N 2, 3.0 atm H2, and 0.50 atm NH3 being used in the Haber process: The Gibbs energy of formation of ammonia is -16.4 kJ/mol. 

N2 (g) + 3 H2 (g) ↔ 2 NH3 (g)