Ch.12 - SolutionsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Pentane (C5H12) and hexane (C6H14) form an ideal solution. At 25°C the vapor pressures of pentane and hexane are 511 and 150. torr, respectively. A solution is prepared by mixing 25 mL pentane (density, 0.63 g/mL) with 45 mL hexane(density, 0.66 g/mL).b. What is the composition by mole fraction of pentane in the vapor that is in equilibrium with this solution?

Problem

Pentane (C5H12) and hexane (C6H14) form an ideal solution. At 25°C the vapor pressures of pentane and hexane are 511 and 150. torr, respectively. A solution is prepared by mixing 25 mL pentane (density, 0.63 g/mL) with 45 mL hexane
(density, 0.66 g/mL).

b. What is the composition by mole fraction of pentane in the vapor that is in equilibrium with this solution?