Problem: Solutions of hydrogen in palladium may be formed by exposing Pd metal to H2 gas. The concentration of hydrogen in the palladium depends on the pressure of H2 gas applied, but in a more complex fashion than can be described by Henry’s law. Under certain conditions, 0.94 g of hydrogen gas is dissolved in 215 g of palladium metal (solution density = 10.8 g cm3).(a) Determine the molarity of this solution.

🤓 Based on our data, we think this question is relevant for Professor Del Negro's class at NCSU.

FREE Expert Solution

molar mass = gramsmolesmoles = gramsmolar massmoles = 0.94 g2.016 gmol

moles = 0.4663 mol


volume = 215 g ×1 cm30.94 g×1 mL1 cm3×10-3 L1 mL

volume = 0.2287 L


View Complete Written Solution
Problem Details

Solutions of hydrogen in palladium may be formed by exposing Pd metal to Hgas. The concentration of hydrogen in the palladium depends on the pressure of H2 gas applied, but in a more complex fashion than can be described by Henry’s law. Under certain conditions, 0.94 g of hydrogen gas is dissolved in 215 g of palladium metal (solution density = 10.8 g cm3).

(a) Determine the molarity of this solution.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Calculate Molarity concept. You can view video lessons to learn Calculate Molarity. Or if you need more Calculate Molarity practice, you can also practice Calculate Molarity practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Del Negro's class at NCSU.

What textbook is this problem found in?

Our data indicates that this problem or a close variation was asked in Chemistry - OpenStax 2015th Edition. You can also practice Chemistry - OpenStax 2015th Edition practice problems.