**Step 1.** convert:

10^{-2} m = 1 cm

$\mathbf{1}\mathbf{.}\mathbf{0}\mathbf{\times}{\mathbf{10}}^{\mathbf{-}\mathbf{15}}\mathbf{}\overline{)\mathbf{m}}\mathbf{\times}\frac{\mathbf{1}\mathbf{}\mathbf{cm}}{{\mathbf{10}}^{\mathbf{-}\mathbf{2}}\mathbf{}\overline{)\mathbf{m}}}\mathbf{=}$** 1.0 x 10 ^{–13} cm **

1 amu = 1.66 x 10^{-24 }grams

$\mathbf{1}\mathbf{.}\mathbf{0073}\mathbf{}\overline{)\mathbf{amu}}\mathbf{\times}\frac{\mathbf{1}\mathbf{.}\mathbf{66}\mathbf{\times}{\mathbf{10}}^{\mathbf{-}\mathbf{24}}\mathbf{}\mathbf{g}}{\mathbf{1}\mathbf{}\overline{)\mathbf{amu}}}\mathbf{=}$** 1.67 x 10 ^{–24} g **

Using the mass of the proton 1.0073 amu and assuming its diameter is 1.0x10^{ - 15} m, calculate the density of a proton in g/cm^{3}.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Density of Geometric Objects concept. You can view video lessons to learn Density of Geometric Objects. Or if you need more Density of Geometric Objects practice, you can also practice Density of Geometric Objects practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Liwosz's class at UB.