# Problem: Neutron stars are believed to be composed of solid nuclear matter, primarily neutrons.Assume the radius of a neutron to be approximately 1.0 10 - 13 cm, and calculate the density of a neutron. [exttip{Hint}{Hint}: For a sphere V = (4/3)r3.]

###### FREE Expert Solution

Recall that density is the ratio of the mass and volume of an object:

$\overline{){\mathbf{density}}{\mathbf{=}}\frac{\mathbf{mass}}{\mathbf{volume}}}$

Also, the volume of a sphere is given by:

$\overline{){\mathbf{V}}{\mathbf{=}}\frac{\mathbf{4}}{\mathbf{3}}{{\mathbf{\pi r}}}^{{\mathbf{3}}}}$

$\mathbf{V}\mathbf{=}\frac{\mathbf{4}}{\mathbf{3}}\mathbf{\pi }{\mathbf{\left(}\mathbf{1}\mathbf{×}{\mathbf{10}}^{\mathbf{-}\mathbf{13}}\mathbf{cm}\mathbf{\right)}}^{\mathbf{3}}$

V = 4.1887 x 10-39 cm3 ###### Problem Details

Neutron stars are believed to be composed of solid nuclear matter, primarily neutrons.

Assume the radius of a neutron to be approximately 1.0 10 - 13 cm, and calculate the density of a neutron. [: For a sphere V = (4/3)r3.]