Ch.18 - ElectrochemistryWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: A voltaic cell consists of a Pb/ Pb2+ half-cell and a Cu/Cu2+ half-cell at 25°C. The initial concentrations of Pb2+ and Cu2+ are 0.0500 M and 1.50 M, respectively.a. What is the initial cell potential

Solution: A voltaic cell consists of a Pb/ Pb2+ half-cell and a Cu/Cu2+ half-cell at 25°C. The initial concentrations of Pb2+ and Cu2+ are 0.0500 M and 1.50 M, respectively.a. What is the initial cell potential

Problem

A voltaic cell consists of a Pb/ Pb2+ half-cell and a Cu/Cu2+ half-cell at 25°C. The initial concentrations of Pb2+ and Cu2+ are 0.0500 M and 1.50 M, respectively.

a. What is the initial cell potential?

Solution

We are asked to find the initial cell potential in the voltaic cell given. We will use the Nernst Equation to calculate the cell potential. The Nernst Equation relates the concentrations of compounds and cell potential.

Ecell = cell potential under non-standard conditions
cell = standard cell potential
n = number of e- transferred
Q= reaction quotient = [products]/[reactants] 


In the Nernst Equation, the E°cell is needed but only Ecell was given. We have to determine the E°cell first and as well as the anode (oxidation) and cathode (reduction) in the concentration cell and the number of electrons transferred (n).

View the complete written solution...