${\mathbf{V}}_{\mathbf{a}}\mathbf{=}\frac{\mathbf{4}{\mathbf{\pi r}}^{\mathbf{3}}}{\mathbf{3}}\mathbf{=}\frac{\mathbf{4}(3.14)(69\mathrm{pm}){\left({\displaystyle \frac{{10}^{-11}\mathrm{dm}}{1\mathrm{pm}}}\right)}^{\mathbf{3}}}{\mathbf{3}}\mathbf{=}\mathbf{1}\mathbf{.}\mathbf{37536}\mathbf{\times}{\mathbf{10}}^{\mathbf{-}\mathbf{27}}\mathbf{}{\mathbf{dm}}^{\mathbf{3}}$

${\mathbf{V}}_{\mathbf{Ne}}\mathbf{=}(1.37536\times {10}^{-27}\overline{){\mathrm{dm}}^{3}})\left(\frac{1\overline{)L}}{1\overline{){\mathrm{dm}}^{3}}}\right)\left(\frac{2.69\times {10}^{22}\mathrm{atoms}}{1\overline{)L}}\right)\mathbf{=}\mathbf{3}\mathbf{.}\mathbf{6997}\mathbf{\times}{\mathbf{10}}^{\mathbf{-}\mathbf{5}\mathbf{}}\mathbf{atoms}$

A sample of gaseous neon atoms at atmospheric pressure and 0 ^{o}C contains 2.69×10^{22} atoms per liter. The atomic radius of neon is 69 pm.

What fraction of the space is occupied by the atoms themselves?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Dimensional Analysis concept. You can view video lessons to learn Dimensional Analysis. Or if you need more Dimensional Analysis practice, you can also practice Dimensional Analysis practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Castaneda's class at UMICH.