Ch.1 - Intro to General ChemistryWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Nanotechnology, the field of trying to build ultrasmall structures one atom at a time, has progressed in recent years. One potential application of nanotechnology is the construction of artificial cells. The simplest cells would probably mimic red blood cells, the bodys oxygen transporters. For example, nanocontainers, perhaps constructed of carbon, could be pumped full of oxygen and injected into a persons bloodstream. If the person needed additional oxygen-due to a heart attack perhaps, or for the purpose of space travel-these containers could slowly release oxygen into the blood, allowing tissues that would otherwise die to remain alive. Suppose that the nanocontainers were cubic and had an edge length of 24 nanometers.What is the minimum number of nanocontainers that a person would need in their bloodstream to provide 1 hours worth of oxygen?

Problem

Nanotechnology, the field of trying to build ultrasmall structures one atom at a time, has progressed in recent years. One potential application of nanotechnology is the construction of artificial cells. The simplest cells would probably mimic red blood cells, the bodys oxygen transporters. For example, nanocontainers, perhaps constructed of carbon, could be pumped full of oxygen and injected into a persons bloodstream. If the person needed additional oxygen-due to a heart attack perhaps, or for the purpose of space travel-these containers could slowly release oxygen into the blood, allowing tissues that would otherwise die to remain alive. Suppose that the nanocontainers were cubic and had an edge length of 24 nanometers.

What is the minimum number of nanocontainers that a person would need in their bloodstream to provide 1 hours worth of oxygen?