radius = 1.63 mm

mass of 24.1 kg

resistance = 2.061 ohm per km (Ω/km)

d (copper) = 8.96 g/cm^{3}

Calculate the volume of the copper wire:

$\mathbf{V}\mathbf{=}\mathbf{24}\mathbf{.}\mathbf{1}\mathbf{}\overline{)\mathbf{kg}}\mathbf{\times}\frac{{\mathbf{10}}^{\mathbf{3}}\mathbf{}\overline{)\mathbf{g}}}{\mathbf{1}\mathbf{}\overline{)\mathbf{kg}}}\mathbf{\times}\frac{\mathbf{1}\mathbf{}{\mathbf{cm}}^{\mathbf{3}}}{\mathbf{8}\mathbf{.}\mathbf{96}\mathbf{}\overline{)\mathbf{g}}}$

**V = 2689.7321 cm**^{3}

Convert radius from mm to cm:

$\mathbf{r}\mathbf{=}\mathbf{1}\mathbf{.}\mathbf{63}\mathbf{}\overline{)\mathbf{mm}}\mathbf{\times}\frac{{\mathbf{10}}^{\mathbf{-}\mathbf{3}}\mathbf{}\overline{)\mathbf{m}}}{\mathbf{1}\mathbf{}\overline{)\mathbf{mm}}}\mathbf{\times}\frac{\mathbf{1}\mathbf{}\mathbf{cm}}{{\mathbf{10}}^{\mathbf{-}\mathbf{2}}\mathbf{}\overline{)\mathbf{m}}}$

**r = 0.163 cm**

Calculate the height (length) copper (assuming it is a cylinder):

A length of #8 copper wire (radius = 1.63 mm) has a mass of 24.1 kg and a resistance of 2.061 ohm per km (Ω/km). What is the overall resistance of the wire? (d (copper) = 8.96 g/cm^{3})

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Dimensional Analysis concept. You can view video lessons to learn Dimensional Analysis. Or if you need more Dimensional Analysis practice, you can also practice Dimensional Analysis practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Halihan's class at OKSTATE.