Calculate volume of steel:

$\mathit{V}\mathbf{=}{\mathbf{\pi r}}^{\mathbf{2}}\mathbf{h}\phantom{\rule{0ex}{0ex}}\mathbf{V}\mathbf{=}\mathbf{\pi}{(0.22\mathrm{in})}^{\mathbf{2}}(2.16\mathrm{in})\phantom{\rule{0ex}{0ex}}\mathbf{V}\mathbf{=}\mathbf{0}\mathbf{.}\mathbf{3284}\mathbf{}{\mathbf{in}}^{\mathbf{3}}\mathbf{\times}{\left(\frac{2.54\mathrm{cm}}{1\mathrm{in}}\right)}^{\mathbf{3}}\phantom{\rule{0ex}{0ex}}\mathbf{V}\mathbf{=}\mathbf{0}\mathbf{.}\mathbf{3284}\mathbf{}\overline{){\mathbf{in}}^{\mathbf{3}}}\mathbf{\times}\frac{\mathbf{16}\mathbf{.}\mathbf{387}\mathbf{}{\mathbf{cm}}^{\mathbf{3}}}{\mathbf{1}\mathbf{}\overline{){\mathbf{in}}^{\mathbf{3}}}}$

A steel cylinder has a length of 2.16 in, a radius of 0.22 in, and a mass of 41 g.

What is the density of the steel in g/cm^{3}?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Density of Geometric Objects concept. You can view video lessons to learn Density of Geometric Objects. Or if you need more Density of Geometric Objects practice, you can also practice Density of Geometric Objects practice problems.