Ch.11 - Liquids, Solids & Intermolecular ForcesWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: A 0.250-g chunk of sodium metal is cautiously dropped into a mixture of 50.0 g water and 50.0 g ice, both at 0 ˚C. The reaction is2 Na (s) + 2 H2O (l) → 2 NaOH (aq) + H2 (g)          ΔH = -368 kJAssum

Solution: A 0.250-g chunk of sodium metal is cautiously dropped into a mixture of 50.0 g water and 50.0 g ice, both at 0 ˚C. The reaction is2 Na (s) + 2 H2O (l) → 2 NaOH (aq) + H2 (g)          ΔH = -368 kJAssum

Problem

A 0.250-g chunk of sodium metal is cautiously dropped into a mixture of 50.0 g water and 50.0 g ice, both at 0 ˚C. The reaction is

2 Na (s) + 2 H2O (l) → 2 NaOH (aq) + H2 (g)          ΔH = -368 kJ

Assuming no heat loss to the surroundings, will the ice melt? Assuming the final mixture has a specific heat capacity of 4.18 J/g • ˚C, calculate the final temperature. The enthalpy of fusion for ice is 6.02 kJ/mol.

Solution

Lets first answer the first question:

a. Assuming no heat loss to the surroundings, will the ice melt?

We can determine if the ice will melt by calculating the kJ produced once we dropped the Na metal

View the complete written solution...