**+q absorbed by refrigerant ****=**** -q released to freeze water **

$\overline{){{\mathbf{q}}}_{{\mathbf{released}}}{\mathbf{=}}{\mathbf{(}{\mathbf{mc}}_{\mathbf{l}}\mathbf{\u2206}\mathbf{T}\mathbf{)}}_{{\mathbf{1}}}{\mathbf{+}}{\mathbf{(}{\mathbf{mc}}_{\mathbf{s}}\mathbf{\u2206}\mathbf{T}\mathbf{)}}_{{\mathbf{2}}}{\mathbf{+}}\mathbf{\left(}{\mathbf{n\Delta H}}_{\mathbf{freezing}}\mathbf{\right)}}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\mathbf{mass}\mathbf{}\mathbf{water}\mathbf{=}\mathbf{18}\mathbf{}\overline{)\mathbf{ice}\mathbf{}\mathbf{cube}}\mathbf{\times}\frac{\mathbf{30}\mathbf{.}\mathbf{0}\mathbf{}\mathbf{g}}{\overline{)\mathbf{ice}\mathbf{}\mathbf{cube}}}\mathbf{=}\mathbf{540}\mathbf{}\mathbf{g}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}$

${\mathbf{q}}_{\mathbf{released}}\mathbf{=}\mathbf{540}\mathbf{}\overline{)\mathbf{g}}\mathbf{\times}\mathbf{[}\mathbf{4}\mathbf{.}\mathbf{18}\frac{\mathbf{J}}{\overline{)\mathbf{g}}\mathbf{\xb0}\mathbf{C}}\mathbf{(}\mathbf{0}\mathbf{\xb0}\mathbf{C}\mathbf{-}\mathbf{22}\mathbf{.}\mathbf{0}\mathbf{\xb0}\mathbf{C}\mathbf{)}\mathbf{+}\mathbf{2}\mathbf{.}\mathbf{03}\frac{\mathbf{J}}{\overline{)\mathbf{g}}\mathbf{\xb0}\mathbf{C}}\mathbf{(}\mathbf{-}\mathbf{5}\mathbf{\xb0}\mathbf{C}\mathbf{-}\mathbf{0}\mathbf{\xb0}\mathbf{C}\mathbf{)}\mathbf{]}\phantom{\rule{0ex}{0ex}}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{+}\mathbf{(}\mathbf{540}\mathbf{}\overline{)\mathbf{g}\mathbf{}{\mathbf{H}}_{\mathbf{2}}\mathbf{O}}\mathbf{\times}\frac{\mathbf{1}\mathbf{}\overline{)\mathbf{mol}\mathbf{}{\mathbf{H}}_{\mathbf{2}}\mathbf{O}}}{\mathbf{18}\mathbf{.}\mathbf{0}\mathbf{}\overline{)\mathbf{g}\mathbf{}{\mathbf{H}}_{\mathbf{2}}\mathbf{O}}}\mathbf{\times}\frac{\mathbf{-}\mathbf{6}\mathbf{.}\mathbf{02}\mathbf{}\mathbf{kJ}}{\overline{)\mathbf{mol}}}\mathbf{)}\phantom{\rule{0ex}{0ex}}$

***ΔH _{freezing} = -ΔH*

An ice cube tray contains enough water at 22.0 ˚C to make 18 ice cubes that each has a mass of 30.0 g. The tray is placed in a freezer that uses CF_{2}Cl_{2} as a refrigerant. The heat of vaporization of CF_{2}Cl_{2} is 158 J/g. What mass of CF _{2}Cl_{2} must be vaporized in the refrigeration cycle to convert all the water at 22.0 ˚C to ice at -5.0 ˚C? The heat capacities for H_{2}O _{(s)} and H_{2}O _{(l)} are 2.03 J/g • ˚C and 4.18 J/g • ˚C, respectively, and the enthalpy of fusion for ice is 6.02 kJ/mol.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Heating and Cooling Curves concept. You can view video lessons to learn Heating and Cooling Curves. Or if you need more Heating and Cooling Curves practice, you can also practice Heating and Cooling Curves practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Lapeyrouse's class at UCF.

What textbook is this problem found in?

Our data indicates that this problem or a close variation was asked in Chemistry: An Atoms First Approach - Zumdahl Atoms 1st 2nd Edition. You can also practice Chemistry: An Atoms First Approach - Zumdahl Atoms 1st 2nd Edition practice problems.