Use Clasius-Clapeyron where at 100°C, the pressure is 1 atm or 760 torr. Find T2 where P2 is 520 torr

$\overline{){\mathbf{ln}}{\mathbf{}}\frac{{\mathbf{P}}_{\mathbf{2}}}{{\mathbf{P}}_{\mathbf{1}}}{\mathbf{=}}{\mathbf{-}}\frac{\mathbf{\u2206}{\mathbf{H}}_{\mathbf{vap}}}{\mathbf{R}}\mathbf{[}\frac{\mathbf{1}}{{\mathbf{T}}_{\mathbf{2}}}\mathbf{-}\frac{\mathbf{1}}{{\mathbf{T}}_{\mathbf{1}}}\mathbf{]}}$

In Breckenridge, Colorado, the typical atmospheric pressure is 520. torr. What is the boiling point of water (ΔH_{vap} = 40.7 kJ/mol) in Breckenridge?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Clausius-Clapeyron Equation concept. You can view video lessons to learn Clausius-Clapeyron Equation. Or if you need more Clausius-Clapeyron Equation practice, you can also practice Clausius-Clapeyron Equation practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Bindell's class at UCF.

What textbook is this problem found in?

Our data indicates that this problem or a close variation was asked in Chemistry: An Atoms First Approach - Zumdahl Atoms 1st 2nd Edition. You can also practice Chemistry: An Atoms First Approach - Zumdahl Atoms 1st 2nd Edition practice problems.