All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: A tank contains a mixture of 52.5 g oxygen gas and 65.1 g carbon dioxide gas at 27°C. The total pressure in the tank is 9.21 atm. Calculate the partial pressures of each gas in the container.

Solution: A tank contains a mixture of 52.5 g oxygen gas and 65.1 g carbon dioxide gas at 27°C. The total pressure in the tank is 9.21 atm. Calculate the partial pressures of each gas in the container.

Problem

A tank contains a mixture of 52.5 g oxygen gas and 65.1 g carbon dioxide gas at 27°C. The total pressure in the tank is 9.21 atm. Calculate the partial pressures of each gas in the container.

Solution

Recall: Dalton’s Law of Partial Pressures states that the total pressure of a mixture of unreacting gases is the sum of the partial pressures of the individual gases.

The partial pressure of a gas in the mixture is the product of the total pressure of the mixture and the mole fraction, χ, of the gas:

We first need to calculate the mole fraction of the gases before calculating their partial pressures. The molar mass of O2 is 2(16.00 g/mol O) = 32.00 g/mol and the molar mass of CO2 is 12.01 g/mol C + 2(16.00 g/mol O) = 44.01 g/mol.

View the complete written solution...