Ch.6 - Thermochemistry WorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: A balloon filled with 39.1 moles of helium has a volume of 876 L at 0.0°C and 1.00 atm pressure. The temperature of the balloon is increased to 38.0°C as it expands to a volume of 998 L, the pressure

Solution: A balloon filled with 39.1 moles of helium has a volume of 876 L at 0.0°C and 1.00 atm pressure. The temperature of the balloon is increased to 38.0°C as it expands to a volume of 998 L, the pressure

Problem

A balloon filled with 39.1 moles of helium has a volume of 876 L at 0.0°C and 1.00 atm pressure. The temperature of the balloon is increased to 38.0°C as it expands to a volume of 998 L, the pressure remaining constant. Calculate q, w, and ΔE for the helium in the balloon. (The molar heat capacity for helium gas is 20.8 J/°C • mol.)

Solution

This problem is pretty straight forward. We'll just need to use a bunch of equations and directly substitute our given values. 

Before we work on our equations, let's just make sure that we have the correct units. The units for each type of parameter should be consistent. 

Here the units are all consistent so we don't have to convert anything.

View the complete written solution...