Ch.6 - Thermochemistry WorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: A 150.0-g sample of a metal at 75.0°C is added to 150.0 g H2O at 15.0°C. The temperature of the water rises to 18.3°C. Calculate the specific heat capacity of the metal, assuming that all the heat los

Solution: A 150.0-g sample of a metal at 75.0°C is added to 150.0 g H2O at 15.0°C. The temperature of the water rises to 18.3°C. Calculate the specific heat capacity of the metal, assuming that all the heat los

Problem

A 150.0-g sample of a metal at 75.0°C is added to 150.0 g H2O at 15.0°C. The temperature of the water rises to 18.3°C. Calculate the specific heat capacity of the metal, assuming that all the heat lost by the metal is gained by the water.

Solution

This problem can be solved mainly with the concept that the heat released by the metal is equal to the heat absorbed by the water. This can be expressed by the equation below. 

View the complete written solution...