Ch.3 - Chemical ReactionsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Silver sulfadiazine burn-treating cream creates a barrier against bacterial invasion and releases antimicrobial agents directly into the wound. If 25.0 g Ag2O is reacted with 50.0 g C10H10N4SO2, what

Solution: Silver sulfadiazine burn-treating cream creates a barrier against bacterial invasion and releases antimicrobial agents directly into the wound. If 25.0 g Ag2O is reacted with 50.0 g C10H10N4SO2, what

Problem

Silver sulfadiazine burn-treating cream creates a barrier against bacterial invasion and releases antimicrobial agents directly into the wound. If 25.0 g Ag2O is reacted with 50.0 g C10H10N4SO2, what mass of silver sulfadiazine, AgC10H9N4SO2, can be produced, assuming 100% yield?

Ag2O (s) + 2 C10H10N4SO2 (s) → 2 AgC10H9N4SO2 (s) + H2O (l)

Solution

We need to determine the mass of AgC10H9N4SO2 formed by each reactant. The reactant that forms the lower amount of product is the limiting reactant and will dictate the amount of product formed.

The molar mass of AgC10H9N4SO2 is 107.87 g/mol Ag + 10(12.01 g/mol C) + 9(1.01 g/mol H) + 4(14.01 g/mol N) + 32.07 g/mol S + 2(16.00 g/mol O) = 357.17 g/mol.

View the complete written solution...