Problem: A sample of 0.562 g of carbon is burned in oxygen in a bomb calorimeter, producing carbon dioxide. Assume both the reactants and products are under standard state conditions, and that the heat released is directly proportional to the enthalpy of combustion of graphite. The temperature of the calorimeter increases from 26.74°C to 27.93°C. What is the heat capacity of the calorimeter and its contents?

FREE Expert Solution
  • Amount of heat can be calculated using the calorimeter equation:

  • Where q as heat transferred (unknown) ; m is equal to the mass of the calorimeter; c as specific heat of calorimeter (unknown) and Δ T as change in temperature
  • Q will be calculated first followed by the c of the calorimeter. We will be using the calorimeter equation and the constant value of the standard molar enthalpy.
  • mass of bomb calorimeter can be considered as constant where equation be simplified as:
100% (486 ratings)
View Complete Written Solution
Problem Details

A sample of 0.562 g of carbon is burned in oxygen in a bomb calorimeter, producing carbon dioxide. Assume both the reactants and products are under standard state conditions, and that the heat released is directly proportional to the enthalpy of combustion of graphite. The temperature of the calorimeter increases from 26.74°C to 27.93°C. What is the heat capacity of the calorimeter and its contents?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Constant-Volume Calorimetry concept. You can view video lessons to learn Constant-Volume Calorimetry. Or if you need more Constant-Volume Calorimetry practice, you can also practice Constant-Volume Calorimetry practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Paesani's class at UCSD.

What textbook is this problem found in?

Our data indicates that this problem or a close variation was asked in Chemistry - OpenStax 2015th Edition. You can also practice Chemistry - OpenStax 2015th Edition practice problems.