Ch.3 - Chemical ReactionsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: A compound contains 47.08% carbon, 6.59% hydrogen, and 46.33% chlorine by mass; the molar mass of the compound is 153 g/mol. What are the empirical and molecular formulas of the compound?

Solution: A compound contains 47.08% carbon, 6.59% hydrogen, and 46.33% chlorine by mass; the molar mass of the compound is 153 g/mol. What are the empirical and molecular formulas of the compound?

Problem

A compound contains 47.08% carbon, 6.59% hydrogen, and 46.33% chlorine by mass; the molar mass of the compound is 153 g/mol. What are the empirical and molecular formulas of the compound?

Solution

First, we have to establish that the sum of the percentages is 100% of the sample. Now if we assume that we have a total of 100g of the sample, this means that the percentages of each element will just be the same value in grams.

From the mass, we can now divide by molar mass to get the moles: 


Solution BlurView Complete Written Solution