Ch.3 - Chemical ReactionsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Hemoglobin is 6.0% heme (C34H32FeN4O4) by mass. To remove the heme, hemoglobin is treated with acetic acid and NaCl, which forms hemin (C34H32N4O4FeCl). A blood sample from a crime scene contains 0.65 g of hemoglobin.(d) How many grams of hemin could be formed for a forensic chemist to measure?

Solution: Hemoglobin is 6.0% heme (C34H32FeN4O4) by mass. To remove the heme, hemoglobin is treated with acetic acid and NaCl, which forms hemin (C34H32N4O4FeCl). A blood sample from a crime scene contains 0.65

Problem

Hemoglobin is 6.0% heme (C34H32FeN4O4) by mass. To remove the heme, hemoglobin is treated with acetic acid and NaCl, which forms hemin (C34H32N4O4FeCl). A blood sample from a crime scene contains 0.65 g of hemoglobin.

(d) How many grams of hemin could be formed for a forensic chemist to measure?