Ch.6 - Thermochemistry WorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: When a 0.740 g sample of trinitrotoluene (TNT), C 7H5N2O6, is burned in a bomb calorimeter, the temperature increases from 23.4°C to 26.9°C. The heat capacity of the calorimeter is 534 J/°C, and it co

Solution: When a 0.740 g sample of trinitrotoluene (TNT), C 7H5N2O6, is burned in a bomb calorimeter, the temperature increases from 23.4°C to 26.9°C. The heat capacity of the calorimeter is 534 J/°C, and it co

Problem

When a 0.740 g sample of trinitrotoluene (TNT), C 7H5N2O6, is burned in a bomb calorimeter, the temperature increases from 23.4°C to 26.9°C. The heat capacity of the calorimeter is 534 J/°C, and it contains 675 mL of water. How much heat was produced by the combustion of the TNT sample?

Solution

Recall: In a bomb calorimeter, the heat of a reaction is given by:

where qcal = heat absorbed by the calorimeter and qsol'n = heat absorbed by water in the calorimeter. The respective equations for the two are as follows:

where Ccal = heat capacity of the calorimeter (in J/˚C), m = mass of solution (in g), c = specific heat of solution (in J/g•˚C), and ∆T = change in temperature (final T – initial T, in ˚C).

View the complete written solution...